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Abstract

This work deals with the mathematical formulation of data interpretation in connection with
Angular Correlation of Positron Annihilation Radiation (ACPAR), speciVcally the determination
of the Fermi surface, which shows up as a step in the underlying electron momentum density.

The speciVc aspects of the problem, i.e. noise reduction and deblurring of the resolution,
reconstruction of the three-dimensional density and determination of the location of the step
are instances of the general class of inverse problems. The goal of this work is to formulate and
implement a model that, starting from controlled assumptions in the Bayesian sense, obtains
results from given data that are both statistically optimally deVned and systematically as
accurate as possible.

Starting with a review of the physical fundamentals of the problem, the mathematical concepts
relevant for the speciVc parts of the problem are presented. After a discussion of the weak
points of the previous approaches a model is proposed, where a Fourier parametrization of
the conduction band energy takes the role of a level set function corresponding to the Fermi
surface, while the momentum density is modelled as a free function deVned point-wise, but
subject to an explicit regularization via its second derivative. An eXcient implementation of
this model, which generates samples of realizations of the Fermi surface in agreement with the
experimental data, is discussed thoroughly. Finally its performance is demonstrated by way of
realistic simulated data.

Zusammenfassung

Diese Arbeit befasst sich mit der mathematischen Formulierung der Interpretation von Daten
gewonnen mittels Winkelkorrelation der Positronenannihilationsstrahlung (ACPAR), speziell der
Bestimmung der FermiWäche, welche als Stufe in der zugrundeliegenden Elektronenimpulsdichte
aufscheint.

Die speziVschen Aspekte des Problems, nämlich Unterdrücken von Rauschen und Kompensie-
ren endlicher AuWösung der Daten, das Rekonstruieren der dreidimensionalen Dichte, und die
Bestimmung des Ortes der Stufe gehören zu der allgemeinen Klasse der inversen Probleme. Das
Ziel dieser Arbeit ist die Formulierung und Implementierung eines Modells, welches ausgehend
von kontrollierten Annahmen (im Bayesischen Sinne) aus gegebenen Daten sowohl statistisch
möglichst gut deVnierte als auch systematisch möglichst akkurate Resultate gewinnt.

Beginnend mit einem Überblick über die physikalischen Grundlagen des Problems werden je-
weils die für speziVsche Aspekte des Problems relevanten mathematischen Konzepte präsentiert.
Aufbauend auf einer Diskussion der Schwachstellen der bisherigen Zugänge wird ein Modell
vorgeschlagen, in dem eine Fourier-Parametrisierung der Leitungsbandenergie die Rolle einer
Level Set Funktion für die FermiWäche übernimmt, während die Impulsdichte als punktweise
deVnierte freie Funktion modelliert wird, die einer expliziten Regularisierung ihrer zweiten
Ableitung unterworfen ist. Eine eXziente Implementierung dieses Modells, das Stichproben
von Realisierungen der FermiWäche in Einklang mit den experimentellen Daten generiert, wird
eingehend diskutiert. Schließlich wird seine Leistung anhand von realistischen simulierten
Daten belegt.
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1. Introduction

Essentially all properties of matter relevant to everyday life depend on the material’s electronic
structure.1 This is because the outer region of atoms, which deVnes how and which kinds
of atoms can come together to constitute matter, is made up of the electronic “cloud”. As a
consequence, chemistry as the science of matter is to a large part occupied with understanding
the behaviour of the electronic structure of atoms and explaining it in terms of fundamental con-
cepts. Also many of the aspects of matter belonging to the realm of physics, such as magnetism
or visual appearance, are due to the electronic structure, because common external perturbations
(in the aforementioned examples a magnetic Veld or incident light) couple primarily to the
electrons. Even the probably most primitive property of matter, its stability and how it reacts to
an external force, is deVned by the electronic structure acting as a potential between the atomic
nuclei.

The appropriate description of the behaviour of electrons in matter under ordinary conditions
is given by quantum mechanics. This set of rules is not too diXcult to understand for a natural
scientist, whereas its exact solution is extremely diXcult (read: impossible) for any system
involving more than a few electrons. However, approximate theories have proven to be of
much use, as they both allow a solution (sometimes analytical, but mostly numerical) in terms
of understandable concepts and are very successful in explaining and predicting most of the
relevant material properties. Among these concepts are the single-particle states (indexed by a
position in three-dimensional reciprocal space) and the two-dimensional Fermi surface, which
separates the occupied states from the unoccupied ones.

The degree of usefulness of the Fermi surface is surprising: its existence distinguishes
metals (with Fermi surface) from semiconductors or insulators (without Fermi surface), its
area determines the value of several properties characteristic for metals (such as high heat or
electric conductance), and a high density of states at the Fermi level in a would-be paramagnetic
metal can lead to ferromagnetism. For alloys, the volume enclosed within the Fermi surface
is determined by the composition, which suggests that small changes in composition can lead
to large eUects for the material properties if they correspond to changes in the topology of the
Fermi surface.

Even though the importance of the Fermi surface is generally accepted and it is widely used
for the interpretation of theoretical calculations of the electronic structure of a given system,
direct experimental measurements are comparatively scarce. This is because of the diXculties
associated with the various experimental techniques: the classical quantum oscillatory methods
that utilize for instance the de Haas-van Alphen or the Shubnikov-de Haas eUects, need high
external magnetic Velds, low temperatures and well-ordered samples, whereas the newer method
of angle-resolved photo-emission spectroscopy (ARPES) is extremely surface-sensitive, which

1The exception here are nuclear properties such as radioactivity.
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1. Introduction

casts doubt on the claim of its results to be representative of the bulk behaviour. The third
possibility, Angular Correlation of Positron Annihilation Radiation (ACPAR), does not have
these limitations, but suUers from the fact that a number of eUects contribute to the signal,
which have to be considered for deducing the Fermi surface. The method could therefore beneVt
greatly from a demonstration of a reliable approach for the extraction of the desired quantities
from the signal, which would make it a very versatile technique for studies of the electronic
structure, in particular of the Fermi surface, for a wide range of systems. This is the goal of this
thesis.

From the point of view of applied mathematics, the steps of the solution of this problem
belong to various subVelds of imaging: Conceptually, in a Vrst step the raw experimental data
could be computationally processed to obtain two-dimensional intensity images. These images,
which are projections of an underlying three-dimensional density distribution, would then be
used to reconstruct the density by tomographic techniques, from which the Fermi surface can be
determined via segmentation methods. At all stages of this inverse problem, the experimental
resolution and data noise have to be considered. Actually, however, it is beneVcial to treat all
these requirements in an integral way by a formulation as a general Bayesian inverse problem,
as will be shown during the course of this thesis.

This is the structure: First, the physical problem will be presented, beginning with the
experiment and leading to the explanation of the physical laws giving rise to the observed
phenomena. In the next chapter the mathematical side of the problem will be treated. For the
general tasks to be done (tomographic reconstruction, segmentation, deblurring, noise reduction)
a wide range of solutions have been employed, which will be discussed in relation to the speciVc
aspects of the physical problem. Then previous approaches to the solution of the problem will
be reviewed, and a new model will be proposed. Lastly, its performance will be evaluated by
applying it to simulated data.

2



2. Physical background

In this chapter I will present the physical fundamentals necessary for an understanding of
the problem. In contrast to most other such expositions, I chose here to proceed from the
special to the general. To be speciVc, I will Vrst outline the experimental principles, then give
a short motivation of the eUects to be observed, and Vnally present the relevant principles of
solid state physics and derive the resulting features from Vrst principles. The reason for this is
that quantum mechanics, which is the theory appropriate for the description of the electronic
structure in materials, is, although second nature to solid state physicists, possibly a rather
uncomfortable terrain for non-physicists. With the present progression I hope to be able to at
least communicate the experimental principle, which is easy enough to understand. Seen from
another side, the chosen presentation is in line with the experimental physicist’s way of work:
devising an experimental method, developing a feeling for the observed results, and Vnally
(hopefully!) being able to rationalize them by fundamental laws. I will end this chapter by a
statement of the problem to be solved in this thesis in physical terms.

2.1. Angular Correlation of Positron Annihilation Radiation
(ACPAR)

2.1.1. History of the positron, antimatter and annihilation

The modern concept of antimatter initially started out as an incidental consequence of the
uniVcation of quantum mechanics and special relativity for explaining the electron spin by Dirac
(1928): the equation describing the electron admitted an additional solution corresponding to a
particle behaving as if it had a positive charge, but a negative energy (which runs counter to the
fundaments of physics). In a subsequent publication, Dirac (1930) elaborated on the issue and
put forward the hypothesis that nearly all of these negative-energy states should be considered
as occupied (and therefore unreachable), while the non-occupied states (holes) of negative
energy can be considered as particles of positive energy (and positive charge), rectifying the
problem of negative energies. He also tentatively identiVed these positive-charge solutions of
the fundamental equation with the proton, the only particle of positive charge known then, and
concluded that if a (positive energy) electron falls into such a hole, both the electron and the
proton disappear, emitting the energy equivalent of the annihilated masses as radiation. Dirac
was awarded the 1933 Nobel Prize in Physics for the breakthrough enabled by his equation.

However, it soon became apparent that under this assumption the possibility of the annihila-
tion of electrons together with protons would preclude the existence of stable matter on relevant
timescales (Oppenheimer, 1930a,b; Tamm, 1930). Also the diUerences in the electron and proton
mass remained unaccounted for. Therefore Dirac (1931) was lead to the postulation of a new

3



2. Physical background

kind of particle with the same mass as the electron, but opposite charge, calling it anti-electron.
This approach has proven successful so that in today’s standard model of particle physics every
particle has an anti-particle (or can annihilate with itself and is therefore its own anti-particle).

Independent of the theoretical prediction, signatures of a particle of positive charge and a
mass in the range of the electron mass were found in cloud chamber photographs by Anderson
(1932, 1933). He called this new particle positron (a contraction of “positive electron”1) in the
expectation that the properties of this new particle would be exactly those of the electron only
diUering in the sign of the charge, which is nowadays in principle accepted. Anderson was
awarded the 1936 Nobel Prize in Physics for this discovery. Klemperer (1934) demonstrated the
experimental proof that the majority of positrons actually annihilate with the emission of two
photons, each having about the energy equivalent of the electron mass.

2.1.2. The principle of ACPAR and its implementations

The principle of ACPAR is to probe the electronic structure of a system by implanting positrons
into the sample and detecting the emitted annihilation photons in coincidence mode. SpeciVcally,
due to energy and momentum conservation, the sum of the momenta of the photons resulting
from a given annihilation event is equal to the sum of the momenta of the electron-positron pair
before annihilation. As follows from quantum electrodynamics (see, e.g., Berestetskii, Lifshitz,
and Pitaevskii, 1982), the most probable annihilation channel is via the emission of two photons.
Therefore experimentally two detectors facing the sample from opposite sides are operated in
coincidence mode, i.e. detected photons are only counted if both detectors respond within a
pre-deVned small time window (on the order of 100 ns). Each of these pairs of photon detection
events is then assumed to be due to a single annihilation event. As the single detector count
rates are typically only on the order of 104 s−1, an additional beneVt is that this coincidence
criterion also reduces the background to a negligible level. The primary experimental data
are therefore the so-called two-photon momentum density (or rather projections of it), which
is the probability density of the sum of the photon momenta and incorporates information
about the electronic structure of the system, as will be detailed in Sect. 2.4.9. In principle the
experiment could yield even more information by also recording the summed energy for each
photon pair, but today’s detection technology cannot reach the necessary energy resolution of
tens of eV in the relevant regions of 500 keV for resolving the diUerent orbitals, let alone with
position-sensitive detectors which are necessary for deVning the momenta.

The Vrst measurement according to this principle was performed by Beringer and Mont-
gomery (1942). In this study it could only be concluded that in general the angular deviations
are smaller than one degree because of the poor resolution and eXciency due to the use of
detectors without position resolution with an aspect ratio near one. Later DeBenedetti et al.
(1950) recognized that by employing slits the resolution in one dimension can be enhanced at the
expense of the second dimension and that therefore the measured quantity corresponds to the
mathematically well-deVned projection of the spherically averaged (due to the polycrystalline
nature of the sample) three-dimensional two-photon momentum density down to one dimension
(the longitudinal component is the second undeVned coordinate), at the same time giving higher

1His calling the ordinary electron “negatron” did not take hold, however.
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2.1. Angular Correlation of Positron Annihilation Radiation (ACPAR)

count rates due to the larger active area. This already enabled valuable conclusions on the
electronic structure to be drawn, even more so when using single crystals (Berko and Plaskett,
1958).

The method reached its present level of sophistication with the introduction of two-dimen-
sional arrays of detectors by Berko, Haghgooie, and Mader (1977) followed by position-sensitive
detectors (West, Mayers, and Walters, 1981; Bisson et al., 1982), so that nowadays one directly
obtains the two-dimensional projection of the two-photon momentum density. For the future
there are plans to use position-sensitive detectors that have also some energy resolution to
be able to resolve also the third (longitudinal) component via the Doppler shift, although
the achievable resolution will be below what is possible with contemporary two-dimensional
detectors.

The principles of a two-dimensional ACPAR experiment are illustrated in Fig. 2.1: Due to the
small active sample volume the position of detection deVnes the respective photon propagation
directions (and therefore the directions of the momentum vectors), and a deviation from collinear
propagation directions is due to a transversal component of the sum momentum, as will be
derived in Sect. 2.2. Essentially, summing the vectors of the detection positions x1 and x2 on
the respective detectors (counted from the centre) gives a signal that is proportional to the
transversal part of the sum momentum. These signals are histogrammed over two dimensions

x1

x2

pA1 pB1

pA2 pB2

pA
pB

Figure 2.1.: Principles of two-dimensional ACPAR: Coincident photons have been detected at x1

and x2, respectively, which deVnes the photon propagation directions (neglecting
the Vnite sample volume). The respective longitudinal momentum components
(corresponding to the energies) cannot be resolved, therefore the longitudinal com-
ponent of the sum momentum pX = pX1 + pX2 is unspeciVed (illustrated here for the
experimentally indistinguishable cases A and B).
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2. Physical background

and give the primary experimental data, the so-called “projections”.
The following numbers will give a feeling for the relevant scales (widths and resolutions

are to be understood as standard deviations of a Gaussian distribution): For a positron beam
directed onto the sample from above (as will in the following always be assumed) the active
sample volume and therefore the resolution loss in the vertical dimension is negligible due to
the small positron penetration lengths in dense matter. In the horizontal dimension it is given
by the diameter of the beam, which is on the order of 1 mm. Typical values for the deviation
from collinearity α are 5 mrad. With a detector resolution on the order of 2 mm, a detector-
detector-distance of at least 20 m is desirable for resolving the eUects. With a typical detector
size of 50 cm it follows that the experimental “projections” are indeed to a good approximation
the orthogonal projections of the three-dimensional two-photon momentum density into the
detector plane.

2.1.3. The analogy to Positron Emission Tomography (PET)

Positron Emission Tomography is a classical method in radiomedicine. Due to its practical
importance it has been a subject of great importance for applied mathematics (Wernick and
Aarsvold, 2004). It is very much related to 2D-ACPAR both in its physical principles and the

x1

x2

xA

xB

Figure 2.2.: Principles of PET: Coincident photons have been detected at x1 and x2, therefore the
annihilation event happened on the connecting line (neglecting the small deviation
from collinearity). Two possible annihilation sites xA and xB are illustrated. In mod-
ern implementations, the diUerence in the photon arrival times is used as additional
information on the annihilation position along the connecting line, although with
worse resolution compared to the transversal components.

6



2.2. The two-photon momentum density

resulting mathematical problem, so I will work out this analogy here.
The illustration is given in Fig. 2.2. The experimental set-up is exactly the same as for

ACPAR, only the scales diUer: the sample is much larger, and the detectors are as near as
possible to the sample. The reason is that while in ACPAR one wants to be able to neglect
the inWuence of the annihilation position to detect the deviation from collinearity, here one
wants to neglect the deviation from collinearity in order to determine the annihilation position.
Mathematically, these two concepts correspond to a formulation in terms of position (called
real space) or directions and wavenumbers, that is in terms of Fourier components (reciprocal
space in the physical jargon). The two problems are surprisingly equivalent: in both cases one
measures projections of some sort, either because of insuXcient energy or time resolution. For
PET the mathematical problem is a bit more laborious than for ACPAR, because due to the
diUerent scales the projection lines cannot be considered as parallel any more and therefore
the experimental data have to be described as higher-dimensional densities (actually, in real
implementations one does not use two opposing detectors but a closed ring of detectors). Also,
due to the large samples, the in-sample attenuation has to be considered.

2.2. The two-photon momentum density

2.2.1. Connection to the experimental data

Here the derivation of the connection between the photons’ deviation from collinearity and the
transversal components of the momentum sum is given.

Let ~p1 and ~p2 be the momenta of the two photons coming from a single annihilation event.
Under the assumption of a point source, the photon directions (which are the directions of the
respective momentum vectors) can be inferred from the impinging positions on the detectors,
while contemporary detectors cannot resolve the photon energies (which correspond to the
length of the momentum vectors). For simplicity, the coordinate system is chosen such that the
propagation directions of the photons lie in the x-y-plane, symmetric to the y-axis. The photon
momenta are therefore given by

~p1 = p1

(
cosα/2

sinα/2

)
and ~p2 = p2

(
− cosα/2

sinα/2

)
, (2.2.1)

with α the angular deviation from anti-parallel directions. The components of the momentum
sum follow as

p2γ
x = (p1 − p2) cosα/2 (2.2.2)

and
p2γ
y = (p1 + p2) sinα/2. (2.2.3)

The relativistic expression for a particle’s total energy (Jackson, 1999) is

E2 = (mc2)2 + (pc)2c, (2.2.4)

wherem is the particle mass (which can be zero such as for photons), p is the particle momentum,
and c is the speed of light. The annihilation of an electron with a positron to two photons gives

7



2. Physical background

therefore an energy balance of

(p1 + p2)c = 2mec
2 + ∆E, (2.2.5)

where the left-hand side is equal to the energy carried away by the two annihilation photons,
and the right-hand side corresponds to the energy liberated by the annihilation (2mec

2, as the
positron mass is equal to the electron mass me) plus the diUerence in energy ∆E of the system
before and after the annihilation. Plugging this expression into Eq. (2.2.3) gives immediately

p2γ
y = 2 sin(α/2)mec

(
1 +

∆E

2mec2

)
. (2.2.6)

Apart from core electrons (for which the annihilation probability is very small anyway), the
relevant energies ∆E are on the order of tens of eV compared to the electron mass-equivalent of
mec

2 = 511 keV. Due to Eq. (2.2.4), as a consequence also the momenta are much smaller than
mec and therefore |α| � 1. Concludingly it follows that the angular deviation is connected
to the transversal part of the two-photon momentum for practical purposes by the simple
expression

p2γ
y = αmec. (2.2.7)

The general three-dimensional case obviously follows from the case treated here by splitting
the so-obtained transversal part of the momentum into its horizontal and vertical components.
Because of the small solid angle subtended by the detectors one can use the small-angle
approximation tan(θ) = θ also for the propagation directions, so that experimentally the
projections of the two-photon momentum density are obtained just by histogramming the
summed position vectors of pairs of coincident photons.

2.2.2. Theoretical interpretation

The two-photon momentum density is the primary quantity derived in an ACPAR experiment.
Here I will roughly sketch what we can learn from it about the electronic structure of the solid.
For a more thorough discussion see Sect. 2.4.

The momentum is a conserved quantity. As a consequence, the sum momentum of the
annihilation photons is equal to the diUerence of the sum momentum of the system before
and after the annihilation event. The two-photon momentum density therefore describes the
possible transitions from the state of N electrons and one positron to N − 1 electrons and no
positron via the diUerence in total momentum, weighted by the respective probabilities. Any
such transition corresponds to an excitation of a so-called “quasi-hole”.

In a metal, the distribution of these transitions, which is the distribution of occupied “quasi-
particle” states, shows a discontinuity, the Fermi surface. It is due to the energy of the states
being smoothly varying, with the lowest N being occupied in the ground state. The Fermi
surface is then the two-dimensional manifold that separates the occupied from the unoccupied
states. In a fermionic system, each state can be occupied at most once, therefore the Fermi
surface determines the low-energy excitations of the system, which, for example, are responsible
for the conductivity of a metal. As a consequence, its shape is the most important microscopic
quantity for characterizing a given system.
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2.3. The crystalline state

2.3. The crystalline state

In general, the ground state of solid matter is crystalline. I will present the relevant concepts
in this section. These are treated in undergraduate studies of physics, for more comprehensive
presentations see standard textbooks such as Ashcroft and Mermin (1976).

2.3.1. Crystalline matter

Crystallinity means well-orderedness: the knowledge of the arrangement of the atoms in a
small cluster already implies exactly how the atoms are arranged at any distance away. A
few materials can also exist in an amorphous form, which means that a small cluster of atoms
implies the arrangement of its neighbours only in a statistical sense, and over longer distances
the correlation is completely lost. However, these materials, such as fused silica, can only
be formed when a melt is cooled rapidly enough so that the atoms or molecules do not have
time to develop the preferred arrangement, which can be promoted by the addition of further
ingredients such as in window glass or ice cream. Given enough time at elevated temperatures,
however, also these materials would crystallize.

The fact that the ground state of matter is crystalline is only an experimental law and in
general cannot be deduced from fundamental principles. Note that already the problem of
Vnding the ground state for the simplest conceivable model for a metal, with a potential that
treats the repulsion of the closed-shell core as hard spheres and the valence electrons as totally
delocalized and homogeneous, leading to an energy gain that is monotonous in the packing
density, is equivalent to the Kepler conjecture.

Unless one takes special precautions to grow a single crystal, during solidiVcation of a metallic
melt normally there will be a number of nuclei, and the resulting solid will show a pattern
of crystalline orientations. The grain sizes range from typically a few micrometers to a few
millimetres, which can be seen by eye, for example in hot-dip galvanization. On the other hand,
if the solid grows by precipitation from solutions, each new particle is deposited at the face of
the crystal, which therefore grows naturally as a single crystal, leading to the popular image of
mineral crystals. The regular form of these crystals is due to anisotropies of the surface energies,
which can be especially high for ionic crystals, leading to a predeVned shape that minimizes the
integral surface energy.

Obviously, under the rigorous deVnition a crystal would need to be inVnite, which is impossi-
ble in reality. However, for practical purposes this is no restriction, as most relevant physical
properties are local in some sense, allowing the description of experiments to be separated into a
bulk contribution representative of the inVnite crystal and a contribution from the surface, which
can be seen as a lower-dimensional crystal. By convention one admits also other deviations from
perfectness: If the system is composed of atoms of diUerent kinds, it is conceivable that the sites
where atoms sit follow the symmetries, but the actual occupations of the sites by the diUerent
kinds of atoms does not. Also some random sites can be left unoccupied (termed vacancies).
Both of these eUects will also lead to displacements of the neighbouring atoms from the ideal
positions. Finally, at Vnite temperatures the atoms will oscillate about their ideal positions.
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2. Physical background

2.3.2. Point symmetries

A very useful description of a given crystal is via its symmetries. The point group of a crystal is
the group (in the mathematical sense) of isometries on three-dimensional space that transform
the crystal into itself (the positions occupied by atoms of a given kind before are also occupied by
these atoms after the operation) while leaving a given point Vxed. This is therefore a symmetry
of directions. It can be visualized by objects that have this symmetry: Picture for example
a generic rectangular parallelepiped (a matchbox without structure). The point symmetry
operations are inversion (transforming a generic point (x, y, z)→ (−x,−y,−z)), three mirror
operations (for instance reWection by the x-y-plane (x, y, z)→ (x, y,−z)), and three two-fold
axes of rotation (for instance rotation around the x-direction (x, y, z)→ (x,−y,−z)). This is
orthorhombic symmetry. A generic point on the surface (corresponding to a direction) belongs
therefore to a class of eight equivalent points. If two of the three edges have the same length,
tetragonal symmetry follows, which has additional operations in the symmetry group such as
a four-fold axis of rotation and additional mirror planes. Finally, if all three edges have the
same length, the crystal has cubic symmetry, so that there are 48 directions within one generic
symmetry equivalence class (six permutations of the coordinates times eight possibilities for the
respective signs).

There is, however, no total order on the set of point groups in the sub- and super-group
sense. Picture for example a right prism with a regular pentagonal base. Here the main axis is a
Vve-fold rotation axis, which obviously does not Vt with the symmetry groups outline above.

An immediate, though important consequence of the point group of a crystal is formulated
by Neumann’s principle, which says that the symmetry group of any physical phenomenon
contains the symmetry group of the crystal as subgroup. For example, the thermal conductivities
of a crystal along two given directions will be equal if there is an element in the point group of
the crystal that maps one direction to the other.

2.3.3. Translation symmetries — the lattice

The other symmetry concept that is relevant for crystallinity is discrete translation symmetry.
This is deVned by three linearly independent vectors so that a translation of the crystal by any
integer linear combination of these transforms the crystal into itself. As a consequence of this
it is possible to tile the volume by a periodic repetition of a single cell. An obvious choice for
this unit cell is the parallelepiped that is spanned by the three basis vectors, such as in the case
of the matchbox considered above. The lattice is the set of points in R3 that correspond to all
possible translation vectors. These translation operations also constitute a group. The choice of
the basis vectors is obviously not unique. Basis vectors that yield the highest possible symmetry
for a given arrangement of atoms (with the largest translation group and the smallest unit cell)
are called primitive basis vectors, and the resulting unit cell is called primitive cell.

For some translation symmetries, the parallelepiped spanned by the primitive basis vectors is
not optimal in the sense that it does not display the point symmetry of the lattice. An example is
the face-centred cubic lattice, which is illustrated in Fig. 2.3. Sometimes it is desirable to choose
the (unique) primitive cell that displays the point symmetry of the lattice, which is called the
Wigner-Seitz cell. Mathematically this is just the Voronoi cell of any point in the lattice, i.e. the
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2.3. The crystalline state

Figure 2.3.: The face-centred cubic lattice is generated by Vlling space with a regular arrangement
of cubes and putting atoms on the cube corners (one per cube) and on the centres
of the cube faces (three per cube). Here the atoms of two and a half cubic cells are
plotted, with two possible primitive cells: on the left the parallelepiped generated
by a given choice of primitive translation vectors, which does not display the cubic
symmetry, and on the right the Wigner-Seitz cell, which displays the full point
symmetry.

set of points in R3 that are closer to a given lattice point than to any other lattice point.
Incidentally, the deVnition of crystalline matter includes systems that display only point

symmetries, but no translation symmetry. In these systems called quasicrystals, the atomic
interactions favour local motifs that are incompatible with translation symmetry, such as the
above-mentioned pentagons (which cannot tile two-dimensional space). Still, a Vnite set of rules
allows to extend a given nucleus uniquely to inVnity. The Vrst simple example has been derived
by Penrose (1974). Subsequently, Shechtman et al. (1984) found and correctly interpreted the Vrst
physical evidence of such an order in the Al-Mn system, for which discovery Dan Shechtman
was awarded the 2011 Nobel Prize of Chemistry.

2.3.4. The reciprocal lattice

Reciprocal space is a concept that is very valuable for the description of various phenomena in
solid state physics. Essentially, it is just the Fourier dual of direct or real space. First, scattering
experiments, which allow to comparatively easily access atomic length-scales by using probes
with appropriate wavelengths, directly give results in reciprocal space. Additionally, the energy
or frequency of delocalized excitations that are described by a modulation vector, for instance
lattice oscillations, is naturally given as a function over reciprocal space. The independent
variable for positions in reciprocal space is conventionally denoted ~k or ~q.

For a crystal, there exists a set of special positions in reciprocal space, namely those that
correspond to modulations that are compatible with the real space periodicity. This is the
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2. Physical background

reciprocal lattice
Λ′ = {λ′ ∈ R3|∀λ ∈ Λ∃n ∈ Z : λ′ · λ = 2πn}, (2.3.1)

where Λ is the real space lattice. It is easy to see that this is again a lattice (a translation group),
which is spanned by~b1,~b2 and~b3 with

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
(2.3.2)

and cyclic permutations, when ~a1, ~a2 and ~a3 are the real space basis vectors. From the deVnition
it follows immediately that Λ′′ = Λ. It is also not hard to see that Λ′ has the same point
symmetry group as Λ: If λ′ ∈ Λ′ and R is a given point symmetry operation it follows that
(Rλ′) · Λ = λ′ · (R−1Λ) = λ′Λ = 0 modulo 2π.

The full-symmetry primitive cell of the reciprocal lattice is conventionally called (Vrst)
Brillouin zone. As points on the Brillouin zone boundary can display additional symmetry, they
are of particular interest, as will be discussed in more detail in Sect. 2.4.5. Due to the point
symmetry, reciprocal space consists of repeated sections. One such primitive cone that can cover
the whole space under the point symmetry operations is called irreducible wedge.

2.4. Microscopic principles of the electronic structure

Here I will brieWy present the most fundamental concepts of solid state physics on the atomic
scale necessary for understanding the results of ACPAR measurements. Again, these are treated
in undergraduate studies of physics. Illustrations of selected aspects will be given in Chap. 5
when applying the proposed algorithms to simulated data.

2.4.1. The Born-Oppenheimer approximation

From the point of view of condensed matter physics, matter consists of atomic nuclei and
electrons. Apart from some nuclear methods in condensed matter physics, atomic nuclei can
be thought of as point-like. The nuclei have positive charges given exactly by small integer
multiples of the elementary charge e, where the integer nuclear charge denotes the chemical
element the speciVc atom is a representative of. To a given nuclear charge corresponds a small
number of possible nuclear masses (diUering by a few percent), which incidentally can also be
written (to a good approximation) as multiples of an elementary mass u. The mean elemental
mass is roughly proportional to the nuclear charge. The nuclei carry an additional quantity
called spin, which cautiously can be thought of as some kind of rotation, although it has no
correspondence in classical macroscopic physics.

Electrons are the direct counterparts of the nuclei: they have a given Vxed amount of negative
charge −e, (positive) mass and spin. They have no internal structure, therefore two electrons
are absolutely indistinguishable.

Despite this analogy between electrons and nuclei from the viewpoint of solid state physics,
quantitative diUerences in their properties lead to a qualitative distinction: normalized to
the same absolute charge, an atomic nucleus is about 3700 times heavier than an electron.
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2.4. Microscopic principles of the electronic structure

Additionally, the charge of a nucleus is typically a few tens of the elementary charge2. This large
diUerence in the charge/mass ratios (and therefore in the force/mass ratios) has the consequence
that due to Newton’s second and third laws of motion the characteristic timescales of the
electrons are much smaller than those of the atomic nuclei. Therefore the problem of calculating
the time evolution of a condensed matter system (atomic nuclei and electrons) can be separated
into a problem concerning only the evolution of the electronic system, treating the atomic nuclei
as immobile, and the problem of the evolution of the nuclei system, which feel only the time
average of the electronic system. This is called the Born-Oppenheimer approximation (Born
and Oppenheimer, 1927) and corresponds to a two-step approach: compute Vrst the electronic
structure (and from this the energy and the forces) for a given arrangement of the nuclei, and
then solve the ionic problem, where the electrons act as black-box potential. Here again the
diUering mass scales lead to a distinction: because of the large nucleus masses, the second
step can for all but the lowest temperatures in general be treated within classical mechanics,
i.e. describing the state of the system via the positions and velocities of all particles, subject
to Newton’s laws of motion. For some eUects it is necessary to consider the quantization of
oscillations (phonons), which also does not pose large problems. On the other hand, because
of the small electron masses, the Vrst step has to be treated fully within quantum mechanics.
This is much harder, but here is where the interesting eUects and open challenges of solid state
physics originate from.

Actually, due to the diUerent energy scales involved it can be beneVcial for practical purposes
to further distinguish between the low-lying, tightly bound core electrons and the mobile,
chemically active valence electrons, and to subsume the former together with the nuclei under
the concept of inert spherical ions with surplus positive charge, the forces among which being
mediated by the valence electrons. From now on the focus will be on the latter, as their behaviour
is responsible for most of the relevant physical eUects.

2.4.2. The wave function

The theory appropriate for the description of electrons in condensed matter is quantum mechan-
ics3. In an abstract setting, a state is described as a unit vector in an appropriate Hilbert space.
SpeciVcally, for a system of N electrons a convenient choice is the space of the suXciently
smooth square-integrable4 complex-valued functions

ψ : ΩN → C with Ω ⊆ R3, (2.4.1)

subject to some symmetries as discussed below. The domain Ω corresponds to the region
of space to which the electrons are conVned. For bounded domains additionally boundary
conditions have to be speciVed, which, however, are normally not relevant for the resulting
physics.

2As a consequence, the mass ratios in an atom are the same order of magnitude as in the solar system.
3Actually, for low-lying states relativistic eUects have to be considered also, an account on the history of which

has been given in Sect. 2.1.1. Most every-day physical eUects, however, including those sampled by positron
annihilation, are directly related only to shallow states, which are described adequately by quantum mechanics.

4For unbounded domains, however, there are physically meaningful solutions corresponding to unbound states
that are only locally square-integrable.
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2. Physical background

The physical interpretation of the wave function ψ is that |ψ|2 corresponds to the spatial
probability density of the electrons, that is, |ψ(~x1, ~x2, . . . )|2d~xN is the inVnitesimal probability
for Vnding an electron at ~x1, another at ~x2 and so on. As the particles are fundamentally
indistinguishable, this probability cannot vary under a permutation of the three-dimensional
coordinate vectors, or, equivalently, the wave function ψ can vary only by a phase factor under
such a permutation. Additionally, exchanging the the same two particles two times leads to the
initial situation, therefore the phase factor is ±1. Particles that follow the positive choice are
called bosons, otherwise they are called fermions. Electrons belong to the latter kind, thus

ψ(. . . , ~xi, . . . , ~xj, . . . ) = −ψ(. . . , ~xj, . . . , ~xi, . . . ) (2.4.2)

with all other coordinates unchanged. This leads to the Pauli exclusion principle and will be
discussed in more detail in Sect. 2.4.6.

2.4.3. The Schrödinger equation

The time evolution of a quantum mechanical system is given by the Schrödinger equation

ı~
∂

∂t
ψ̃ = Ĥψ̃, (2.4.3)

where ~ is the reduced Planck’s constant and Ĥ is the Hamiltonian operator corresponding to
the energy of the system and ψ̃ is the time-dependent wave function. For the non-relativistic
case, which is relevant here, the Hamiltonian can be written as

Ĥ =
−~2

2m
∆ + V, (2.4.4)

where the Vrst term quantiVes the kinetic energy and the second, acting as pointwise mul-
tiplication, the potential energy, i.e. V (r) gives the potential energy when the electrons are
arranged in space as given by the 3N -dimensional vector r. With a real-valued potential V ,
the Hamilton operator (2.4.4) is symmetric, and the energy eigenvalues are therefore real, and
for physically meaningful potentials (such as those that have no stronger divergences than
the Coulomb potential’s 1/r) the spectrum is bounded from below. With a suitable choice of
boundary conditions, the operator becomes self-adjoint.

Under the assumption of a potential that is constant in time, one can make the ansatz of a
separation of spatial and temporal functional dependencies

ψ̃(., t) = exp(−ıEt/~)ψ, (2.4.5)

which leads to the time-independent Schrödinger equation

Eψ = Ĥψ, (2.4.6)

describing stationary states of the system. As a consequence, the stationary states of a system
are given by the eigenstates of the Hamilton operator, and the respective eigenvalues are the
corresponding energies. Mathematically, the problem of Vnding the ground state of an electronic
system corresponds therefore to solving (2.4.6) for the lowest eigenvalue E0.
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2.4.4. Single-particle approximations

Apart from the hydrogen atom and the singly ionized di-hydrogen molecule, both consisting
of only one electron, no analytic solutions of (2.4.6) for realistic systems are known. Due to
the dimensionality, numerical solutions of the full 3N -dimensional partial diUerential equation
(2.4.6) for non-trivial V (r) are obviously only feasible for very small N . The fundamental
description is also not well suited for a qualitative understanding. The conventional approach
is therefore to think about the system as a collection of distinct electrons, each governed by
its own wave function, trading rigorousness for accessibility, both for understanding and,
assuming some eUective interaction potential, calculation. Actually, this description in terms of
single-particle wave functions is also quite successful in explaining most experimental results
on the majority of systems, and the remaining subsections will be restricted to this setting.
Fortunately, as will be discussed at the end of Sect. 2.4.8, in most cases the single-particle view
gives qualitatively correct results even for the many-particle problem. In contrast, “strongly
correlated” systems, i.e. those where such a description gives qualitatively wrong results, have
gained special attention in recent times due to the possibility to observe new physics there.

The most drastic approximation to the problem consists in neglecting any explicit interaction
between the electrons altogether and solve (2.4.6) in only three dimensions with some eUective
single-particle potential V . The ground state of the system is then given by populating the N
states corresponding to the lowest eigenvalues (see Sect. 2.4.6), and the ground state energy is
the sum over the single particle energies. By parametrizing a basic phenomenological model
for V (this is emphasized by calling it “pseudo-potential”) a very satisfactory description of
experimental properties has been obtained for particularly simple metals such as Al and Pb
(Ashcroft, 1963; Anderson and Gold, 1965).

I will now brieWy present the two classical Vrst-principles single-particle approximations, that
is algorithms that allow to calculate properties without adjustable parameters (also called ab
initio methods, i.e. starting from the Hamiltonian). The Hartree-Fock method consists in solving
the original problem (2.4.6) over a subspace of the full 3N -dimensional wave function space:
Take N linearly independent single-particle functions ψi (in this context also called orbitals)
and deVne the many-body wave function via the Slater determinant (Slater, 1929)

ψ(~x1, . . . , ~xN) =
∑
σ∈SN

sgn(σ)
∏
i

ψi(~xσ(i)), (2.4.7)

where SN is the N -element permutation group. This choice obviously fulVls (2.4.2). Taking the
exact potential V , which describes the attractive Coulomb interaction between the nuclei and
the electrons and the repulsive interaction between the electrons themselves, and minimizing
the resulting energy over the form of the orbitals results in a valid state of the system, whose
energy is therefore a rigorous upper bound on the ground state energy. By neglecting the
electron correlation in this way the dimensionality of the problem has been greatly reduced,
allowing to solve small systems such as single atoms or simple molecules.

Especially in solid state physics the predominant ab initio method nowadays is Kohn-Sham
density functional theory (Kohn and Sham, 1965). This goes one step further and drops even
an explicit treatment of the requirement (2.4.2). Again, the state of the system is described
by N single-particle functions ψi, and the potential energy is given only via a functional of
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the overall electron density, which is the pointwise sum of the densities corresponding to the
distinct electrons |ψi|2. The potential energy functional is modelled as the Coulomb energy
of the electron density plus the so-called exchange-correlation term, which is parametrized so
as to approximately take into account the eUects due to exchange (the symmetry requirement
which would be treated exactly in the Slater determinant) and correlation (such as that the exact
many-body wave function should be reduced when two coordinates are close to each other
because of Coulomb repulsion). The most simple functional, the local density approximation,
depends only on the pointwise value of the density, parametrized by comparison with the energy
of a homogeneous electron gas which can be calculated exactly, and already gives quite good
results for most metals. Further enhancements such as the generalized gradient approximation
can improve the agreement with experimental results.

2.4.5. Consequences of the crystalline state

Translation symmetry of the crystal suggests a particular description for the states of the
system, which I will work out here for the single-particle problem: Take some member R of the
translation group, the Hamilton operator Ĥ of Eq. (2.4.4) and a state ψ. Obviously Ĥ commutes
withR, as the potential V is symmetric with respect toR (and the Laplace operator is symmetric
to any translation). Therefore the eigenstates of Ĥ can be chosen to be also eigenstates of R (and
in fact simultaneously for the whole translation group, as the translations commute). SpeciVcally
it follows that the eigenstates of Ĥ can be chosen to fulVl

(Rψk)(~x) = ψk(~x+ ~R) = νk, ~Rψk(~x), (2.4.8)

where the translation operator R is identiVed with its translation vector ~R. Physically only
states with |νk,R| = 1∀R are meaningful, as otherwise the wave function would grow in some
direction without bounds.

For a more thorough analysis we observe that Fourier-transforming (2.4.6) gives

Eψ̂(~k) =
(~2|~k|2

2m
ψ̂ + V̂ ∗ ψ̂

)
(~k). (2.4.9)

Due to its periodicity, the potential V can be written as discrete Fourier series, so that above
equation links only those Fourier coeXcients of ψ that diUer by a reciprocal lattice vector G(~2|~k|2

2m
− E

)
ψ̂(~k) +

∑
G

V̂Gψ̂(~k −G) = 0. (2.4.10)

It therefore follows that for each ~k in the Vrst Brillouin zone (to avoid multiple counting) there
exists a set of eigenvalues Ei,~k and eigenstates ψi,~k(~x) to (2.4.6). SpeciVcally

ψi,~k(~x) = e−ı
~k~xui,~k(~x), (2.4.11)

where ui,~k displays the periodicity of the crystal. Therefore it follows that ν~k, ~R = exp(−ı~k ~R).
The functions ψi,~k are called Bloch states. Realizing a Vnite crystal by assuming periodic

boundary conditions, only those values of ~k that are compatible with the boundary conditions
are allowed. SpeciVcally, it follows that the allowed values are equidistantly spaced and that
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their number is equal to the number of unit cells in the crystal. For macroscopic systems ~k
can be assumed to be a continuous variable, however, and the energies Ei,~k vary smoothly
(due to (2.4.10) and the fact that V̂G decay fast) over the Brillouin zone for a given i and are
called the energy bands. A diUerent view, that is however equally simple and leads to the same
conclusions, is provided by tight-binding theory (Slater and Koster, 1954).

Obviously the energy bands inherit the periodicity of the reciprocal lattice and can therefore
be described via a Fourier series of the appropriate point symmetry. If the symmetry of the
lattice is high enough (such as for the cubic cases), the boundary of the Brillouin zone will be
a mirror plane. Normally this will mean that the gradient of the energy has no perpendicular
component at the zone boundary, although if the relevant Fourier coeXcient is zero due to
additional symmetry (such as for the diamond lattice) it will lead to a symmetrical crossing of
bands.

2.4.6. Occupations

As discussed in Sect. 2.4.4 under the framework of the Hartree-Fock-approximation, a wave
function for non-interacting particles that obeys the requirement of total antisymmetry (2.4.2)
can be constructed from a given choice of single particle wave functions ψi via the Slater
determinant (2.4.7). In fact, from the uniqueness of the determinant it follows that any wave
function of Vnitely many non-interacting fermions can be written in such a way. If now two
electrons are in the same state, i.e. there exist i 6= j with ψi = ψj , the determinant is identically
zero, and therefore does not correspond to a physically meaningful state. This is the fundamental
reason for the Pauli exclusion principle, which states that it is impossible for two fermions
to occupy the same state. Concludingly, the state of a system of non-interacting fermions is
completely determined by specifying which single-particle states are occupied and which are
not (as the particles are indistinguishable).

It is a principle of statistical physics that the probabilities for the system to be in some
state σ depend only on E(σ), the energy of the respective state. SpeciVcally, the ratio of the
probabilities for the system to be in the states σ0 or σ1 fulVls

p(σ1)

p(σ0)
= exp

(
−E(σ1)− E(σ0)

kBT

)
, (2.4.12)

where kB is Boltzmann’s constant (in a sense, this is just the deVnition of temperature in
statistical physics). Consider now a fermionic system with just two states, either occupied
(corresponding to energy E) or unoccupied (corresponding to zero energy), in contact with a
reservoir of particles at energy µ per particle. If the system can exchange particles with the
reservoir, it will have a probability to be occupied of 1/

(
1 + exp((E − µ)/kBT )

)
and to be

unoccupied of 1/
(
1 + exp(−(E − µ)/kBT )

)
(just check that the probabilities fulVl (2.4.12)

and sum to one). As the particles do not interact, this holds also for the occupations of the
single-particle states in a multi-particle system and results in the Fermi-Dirac occupation
probability

p(σi = 1) =
1

1 + exp
(
E(σi)−µ
kBT

) , (2.4.13)

where σ is the occupation vector of the single-particle states, i.e. σi = 1 means that state i is
occupied. Strictly speaking, these occupation probabilities have been derived in the framework
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of the grand-canonical ensemble, which means that the number of particles in the system is not
conserved. By a suitable choice of the chemical potential µ(T ) for a given temperature T it can
be guaranteed, however, that the expected number of particles in the system

∑
i p(σi = 1) is

equal to N , and due to the law of large numbers the relative Wuctuations vanish for systems
with a macroscopic number of electrons, so that (2.4.13) actually also describes the physically
relevant case where the number of electrons is conserved.

For the limit of T → 0 (2.4.13) describes a step function, where exactly those states with an
energy below ε = µ(0) are occupied. ε is termed the Fermi energy.

2.4.7. The Fermi surface

In Sect. 2.4.5 it was demonstrated that the single-particle states can be indexed by a reciprocal
lattice vector ~k and a band index i. The band energies E(~k, i) are smooth in ~k, therefore
E(~k, i) = ε deVnes a number of smooth manifolds (depending on how many bands pass
through the Fermi energy). Together, they are called the Fermi surface and divide reciprocal
space in regions inside the Fermi surface, where a given band is occupied at zero temperature,
from the outside regions, where it is not. Their paramount importance for solid state physics
follows from the fact that the typical widths of the highest occupied bands are in the range of
a few eV, whereas ~kBT ≈ 0.025 eV for room temperature. Therefore (2.4.13) is also for Vnite
temperatures very sharp. Only electrons around the Fermi energy (with |E− ε| not much larger
than kBT ) can contribute to physical eUects that are due to dynamics of the electrons such as
electrical or heat conductivity, while lower-lying electrons remain “frozen”, as they have no
nearby empty states to move into.

From the discretization of the possible ~k it follows that for a crystal consisting of N unit cells,
the reciprocal volume per possible ~k is equal to the N -th part of the Brillouin zone. Considering
the additional binary degree of freedom of spin, it follows that for each electron per unit cell
the Fermi surface encloses half of the volume of the Brillouin zone. For a system with an even
number of electrons per unit cell it is therefore possible that the Fermi energy falls into a gap
between bands. As a consequence, the Fermi surface is empty and the material is an insulator or
a semiconductor (when the width of the band gap is small enough for some higher-lying states
to be thermally occupied). If the uppermost atomic orbitals overlap to some degree in real space,
as is the case for metals, the bands will become wider and overlap in energy, so that generally
the Fermi surface has one (for simple metals such as Na or Cu) or more sheets (for the more
complicated transition metals). Ferromagnetism leads to a splitting of the energies of the two
electron spin possibilities, leading to a complex Fermi surface with a number of sheets for each
spin.

2.4.8. The many-body problem

The treatment until now corresponded to the framework of eUectively single-particle band
structure models, where electron correlation is neglected. Actually, however, as was already dis-
cussed in Sect. 2.4.4, the Coulomb interaction between the electrons is of comparable magnitude
as the Coulomb interaction with the ionic potential and should thus give rise to appreciable
correlations between the electrons. A priori, the actual many-particle-problem can therefore not
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be considered as a small perturbation to the idealized single-particle treatment. However, there
is a consensus that in most cases there is a qualitative correspondence. The relevant concept
here is excitation: In a non-interacting system the ground state corresponds to all single-particle
states below the Fermi level being occupied and all above unoccupied. An excitation consists in
some particles being moved to higher (unoccupied) states, so that now there are holes below
the Fermi level. In an interacting system, single-particle states are not well-deVned, instead
“quasi-particles” and “quasi-holes” take their place. These can be considered as dynamical col-
lections of excited particles having a Vnite life-time, which goes to inVnity for small excitation
energies (the dynamical collections become stable for practical purposes). These quasi-particles
are in a sense a cloud of interacting particles such that the interactions with the outside cancel,
therefore having made the substitution particles→ quasi-particles, they can again be thought
of as non-interacting (but again each quasi-particle excitation can be occupied only once).

The remarkable point is now that in a thought experiment where one slowly dials up the
interaction strength starting from zero, the state evolves smoothly, resulting in the corresponding
state of the interacting system (this concept is called adiabaticity). Starting from an excited
non-interacting state (some excited particles), the momentum (amongst other properties) of
the resulting excited quasi-particles stays constant, while other quantities such as the energy
change. As a consequence, the density of possible excitations in reciprocal space stays constant,
the concept of the Fermi surface stays valid, and the occupations of the quasi-particle excitations
still follow Fermi-Dirac statistics. This electronic state is called Fermi-Landau liquid.

It is possible, however, that at some point during dialling up the interaction strength a
discontinuity happens and that therefore the resulting interacting state diUers qualitatively from
the initial non-interacting state. Such systems are called strongly correlated and are the focus
of much interest. For nearly all of everyday materials the actual interaction is weaker than
the critical one, however, so they can indeed be described in the framework of Fermi-Landau
liquids.

2.4.9. Momentum densities

The last point to cover is how the two-photon momentum distributions observed in ACPAR
are connected to the sample’s electronic structure. Again I will cover Vrst the simple case of
non-interacting particles and afterwards motivate the qualitative eUects of correlations.

Physically, the momentum is a conserved quantity. Therefore the sum of the two annihi-
lation photons’ momenta has to be equal to the sum of the electron and positron momentum
before annihilation, under the assumption that all other electronic states are not aUected by
the annihilation. Quantum-mechanically, this leads to the fact that the probability for the
annihilation of an electron in state ψe with a positron in state ψp into two photons with states
ψi(~x) ∝ exp(−ı~x~ki), respectively, is proportional to∣∣∣∣∣

∫
d~x
(
ψeψpψ1ψ2

)
(~x)

∣∣∣∣∣
2

, (2.4.14)

integrated over the sample. Due to (2.4.11), it follows that this probability is non-zero only if
~ke + ~kp = ~k1 + ~k2 + G for some reciprocal lattice vector G. Energy conservation (see Sect. 2.2)
gives another constraint on the resulting ~ki. Note that above expression essentially is just the

19



2. Physical background

absolute square of the Fourier coeXcients of the product ueup as in (2.4.11). The two-photon
density at a given ~k = ~k1 + ~k2 is then just the double sum over all occupied states (electron and
positron) so that the condition on the wave vectors is fulVlled, weighted by the absolute square
of the respective Fourier coeXcient. Crossing the Fermi surface therefore results in a jump in
the density, as an additional band becomes occupied or unoccupied.

The actual many-body problem is more complicated: First, as discussed above, a description
of the electronic system in terms of single-particle states is a simpliVcation, as correlations will
arise due to the interactions between the electrons. Additionally, also the positron interacts
with the electrons and therefore correlations are built up. However, due to the extremely
small number of positrons in the sample (not more than one at any given time), the overall
spectrum of the electronic excitations will not be aUected. Via an adiabatic dialling-up of the
interactions as in Sect. 2.4.8, the ~k-vectors of the excitations again do not change. Consequently
the two-photon momentum density still shows the unperturbed discontinuities at the Fermi
surface in the density of the occupied electronic states, reweighted by the positron eUects. On
the other hand, the question of the quantitative inWuence of electron-positron correlations on
the values of the two-photon momentum density, which goes under the term “enhancement”
(increased annihilation probability due to the attraction between electrons and positrons), is still
an open problem of theoretical solid-state physics.

2.5. Formulation of the problem

After this exposition of the physical basics I will now formulate the problem to be solved:
The crystallographic structure of the system to be investigated is known (i.e. the geometry

of the Brillouin zone and the point symmetry group). The resolution of the detectors (and
additional eUects limiting the resolution, such as the size of the positron beam spot on the sample
and the thermal momentum of the annihilating positrons) is approximately known. Given are
a number of projections of the two-photon momentum density, where the orientation of the
sample crystal with respect to the detectors is known to some accuracy. The projections are given
as pixel data with integer values, corresponding to uncorrelated realizations of Poisson random
variables. The problem is to Vnd the shape of the Fermi surfaces and the three-dimensional
two-photon momentum density. From general physical knowledge (see the previous sections) it
follows that the three-dimensional momentum density will be smooth away from the Fermi
surface and display jumps with a sign depending on whether the Fermi surface is crossed from
the inside or the outside. The symmetry of two-photon momentum density and Fermi surface
are known from the crystallographic structure, and normally there is only a small number of
plausible choices for the Fermi surface topology.
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The problem to be solved here (determining the Fermi surface from measured ACPAR spectra)
falls into the general class of inverse problems, in the sense that for a given Fermi surface and
two-photon momentum density it is straightforward to derive the resulting spectra (or stochastic
realizations thereof in the presence of noise), whereas the reverse problem is not well-posed
and therefore without modiVcation does not admit a reasonable solution. Inverse problems
are of great practical importance and are one of the examples where recent developments in
mathematics have led to tangible beneVcial eUects for society. In this chapter I will review and
discuss some of the concepts and tools of applied mathematics relevant for solving aspects of
the problem at hand. For a more detailed treatment of speciVc aspects see, for instance, the
relevant chapters of Scherzer (2010).

3.1. Probabilities and statistics

Due to the presence of uncertainties in the data and/or missing information the mathematical
formulation of a data interpretation problem (deciding on fundamental parameters from mea-
surements) will in general be cast in terms of some notion of probability. Here I will discuss the
consequential concepts of approximate solutions and regularization.

3.1.1. Notions of probability

Nowadays, there are two dominating interpretations of probability, going under the subjects of
frequentist inference and Bayesian inference, respectively. The principal distinction is that in
the frequentist interpretation the outcome of an experiment is considered to be the realization
of some random process characterized by a given constant underlying parameter (vector) ξ.
The probability distribution of the outcome is just the limit of the histograms of the outcomes
if the experiment was repeated inVnitely often. The aim of frequentist inference is then to
deduce ξ from the outcome of the experiment. It has no meaning to speak of a probability
distribution for ξ, as it is considered to be a Vxed quantity. Rather, uncertainty is quantiVed via
conVdence intervals, which are derived in some Vxed way so that for a sequence of repetitions
of the experiment the respective computed conVdence intervals include the true value of ξ with
a certain probability. An obvious way of determining an estimate for ξ from an experiment
is Maximum Likelihood Estimation (MLE), which is just the choice of ξ that maximizes the
probability of the experiment to give the observed outcome.

Bayesian inference, on the other hand, treats also ξ as a random variable which can be
described via probability distributions that quantify the available information on the problem.
In some sense, Bayesian inference is a consistent way of updating this information by the
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outcome of experiments. It gets its name from Bayes’ formula

p(x|y) =
p(y|x)p(x)

p(y)
, (3.1.1)

which relates the marginal and conditional probability densities of two events X and Y .
A small example can serve to elucidate these concepts: Consider some shop and let L be the

random variable of people that enter the shop between 9:00 and 9:15 on an average Monday. If
the movements of people are uncorrelated (and the number of potential customers is large and
each person’s probability to enter the shop is small), then the probability density for L is given
by a Poisson distribution

pPoisson(l|λ) =
λl

l!
e−λ, (3.1.2)

characterized by the parameter λ, which is equal to the mean number of customers. Assume now
that an experiment to determine λ is performed, i.e. on a given day the number of customers
is actually counted and found to be l = 0. The maximum likelihood estimate is given by
λ∗ = arg maxλ p(0|λ) = 0. It is obvious that this answer is not meaningful, because while it is
indeed perfectly possible that a small shop has no customer in a given quarter of an hour, the
mean number of customers has to be positive, as otherwise the shop would not exist any more.

The Bayesian approach makes it possible to include such knowledge: Assume that the prior
knowledge (before performing the experiment) is encoded in a probability density for pprior(λ).
Applying Bayes’ formula gives a posterior probability density for the parameter λ taking into
account the result of the experiment

pposterior(λ|l = 0) =
pPoisson(l = 0|λ)pprior(λ)

p(l = 0)
. (3.1.3)

Note that the denominator only serves to normalize the probability density and therefore
normally does not need to be explicitly computed. For the case at hand, even the most primitive
choice of considering each positive λ as equally likely (which corresponds to an improper prior
distribution) results in pposterior(λ|l = 0) = exp(−λ). This quantiVes the gain in information
after performing the experiment. Including more prior information would give an even better
deVned posterior distribution. In fact, the so-obtained posterior distribution can be used as prior
if an additional experiment is to be performed.

The problem to be treated in this thesis, determining Fermi surfaces from ACPAR spectra, is
a quantitative problem. It is natural to treat the Fermi surface (or the parameters that describe
it) as random variables and report the results of experiments in terms of probability densities.
Also, the physical knowledge about the problem implies a lot of prior information. Therefore,
the further discussion will be in the framework of Bayesian inference.

3.1.2. Approximate solutions and their probabilistic interpretation

Generally speaking, an inverse problem is the problem of solving

F (x) = y (3.1.4)

over some domain X . For a speciVc application, x is some unknown internal parameter (vector)
and F is a known deterministic operator that speciVes how some measurable data y depends on
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x. The task is to determine x. Even if F has an explicit inverse, the problem can be ill-posed if (i)
F is not injective, if (ii) the linearization of F−1 around y is unbounded, or if (iii) y is corrupted
by noise and therefore not in the range of F . For the case at hand all three possibilities apply:
the dimension of the data vector y is smaller than the dimension of the parameter vector of
the densities x, therefore the linear operator F has singular values equal to zero implying (i)
and (ii), and the data are indeed noisy, which will make them incompatible with the symmetry
imposed by F , implying (iii).

The solution to (iii) is to relax (3.1.4) and search for x so that F (x) is near y in some distance
metric. In many cases, a sensible choice is to minimize

f(x) =
(
F (x)− y

)>
W
(
F (x)− y

)
=: ||F (x)− y||2W, (3.1.5)

where W is the inverse of the covariance matrix of the noise.
The justiVcation for this approach follows from probability theory. Suppose that the measured

signal y is equal to the ideal signal y∗ = F (x∗) corrupted by additive noise ξ, where the random
vector ξ follows a multivariate Gaussian distribution with covariance matrix C

p(ξ) ∝ exp(−ξ>C−1ξ/2). (3.1.6)

Obviously ξ is equal to the diUerence of data and ideal signal ξ = y − F (x∗), therefore
expression (3.1.5) is nothing else than minus the double logarithm of the probabilities of the noise
realization that corresponds to a given choice for x (the unspeciVed normalization constant of
the probability gives a constant term to the logarithm, which is immaterial and will be neglected
in the following). The least squares problem (3.1.5) is therefore equivalent to maximizing the
probability for the corresponding residuals or, in other words, maximum likelihood estimation,
an insight which is due to Gauss (1809). Thanks to the central limit theorem, assuming a
Gaussian distribution for the noise is often indicated, which explains the pervasiveness of
least-squares estimation.

Note that there are problems where the measured data cannot be described as the ideal signal
plus additive noise with known distribution (let alone Gaussian), for instance with counting
noise such as in the example of the number of people entering a shop, which follows a Poisson
distribution. Here the expected deviations of the data from the ideal signal depend on the
mean, that is, on the parameter to be determined. In such situations it is necessary to replace
the weighted squared deviations by a general expression for the probability p

(
y|F (x)

)
(or its

logarithm, respectively).

3.1.3. Heuristic regularization

In the sense of approximate solutions as discussed above, (3.1.4) will admit a solution, but due
to the unboundedness of the inverse operator and the presence of noise this solution will not be
stable. The concept of modifying the question so that the regularized solution becomes a stable
approximation is called regularization.

There is a number of distinct ways this can be done:

1. describe the search space by a manifold of lower dimension
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2. stop an iterative method before convergence has reached

3. use an explicit regularization functional

The Vrst approach is evident: if x for instance describes two-dimensional data that are known
to be smooth, then a formulation in terms of a truncated Fourier series or a two-dimensional
polynomial will be able to describe the data (nearly) as well as a pixel-by-pixel description, but
uses much less degrees of freedom and is therefore much more stable. In other cases a more
localized formulation, such as in terms of blobs (Lewitt, 1990), can be better suited. As a rule, for
a given problem it is advisable to choose a formulation of the unknowns that is able to describe
the features to a given accuracy with as few degrees of freedom as possible.

The second approach requires more elaboration: Consider minimizing (3.1.5) numerically
by an iterative algorithm. Under certain conditions (Chung, Knepper, and Nagy, 2010) the
features that are reconstructed in early iterations will be those that correspond to large singular
values of A, where A is the linearization of F , and which are therefore not much aUected
by noise. Eventually, however, it will converge towards the true solution of (3.1.5), which
is unstable with respect to noise. The trick is now to stop the iterative algorithm at a stage
where the “essential” features of the solution have been reconstructed, but before it becomes
corrupted by noise. Deciding on when to stop is nontrivial. This also applies to the case of an
expectation-maximization algorithm (Dempster, Laird, and Rubin, 1977), which is a particular
recipe for iteratively solving maximum-likelihood problems. This idea of stopping iterative
solution algorithms before convergence will not be followed here further, because Vrstly for the
case at hand the solution can be arrived at directly as will be shown in Sect. 4.3.5, secondly it
does not allow for generating probability densities for the solution in the Bayesian sense, and
thirdly it is less clear than using an explicit regularization functional.

The third approach in its simplest form is called Tikhonov regularization (Tikhonov, 1963)
and corresponds to replacing (3.1.5) by

f(x) = ||F (x)− y||2W + α||Rx||2 (3.1.7)

with a positive regularization parameter α. Taking for instance R as the identity operator, it
is obvious that the spectrum of the Hessian of f at any solution of the unregularized problem
is bounded from below by α, and that therefore the solution of (3.1.7) for small enough α and
reasonable F is unique and stable with respect to noise on y. The magnitude of α decides on
the relative weighting of the conWicting requirements of stability and faith to the data y. More
general regularization functionals quantify for instance the diUerence of the histogram of x or
its derivatives from a speciVed distribution. A priori, adding such regularization functionals to
the objective function might seem arbitrary. An interpretation in terms of Bayesian probabilities
will be given in the next section.

3.1.4. Bayesian interpretation of regularization

Having identiVed the objective function in unregularized least-squares estimation with the
negative logarithm of the probabilities of the residuals corresponding to a given choice for x, it
is obvious to interpret the addition of a regularization functional also in terms of probabilities.
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In fact, assuming the noise to be independent of the actual model parameters x, the joint
probability is equal to the product of the respective probabilities, and therefore its logarithm is
equal to the sum of the respective logarithms. In a Bayesian interpretation the regularization
functional is thus the negative logarithm of the probability density of x as given by prior
knowledge. A frequentist probabilist could consider it as subsuming the outcomes of diUerent
prior experiments and conceptually do joint maximum likelihood estimation on the data of all
experiments at once, which would be called maximum a posteriori estimation.

I will now explicitly discuss this concept, taking as example a popular choice for a regulariza-
tion functional, the principle of maximum entropy (MaxEnt). Consider an abstract situation
where there are I categories and N entities that initially get assigned to the individual categories
randomly, independent of each other and with equal probability for each category. Denote the
corresponding random vector of entities per category with xi. The probability distribution for
xi is the multinomial distribution with probability density

p(x) =
N !∏
i xi!

1

IN
(3.1.8)

with
∑

i xi = N . IfN is much larger than I , that is the expected number of entities per category
is large, Stirling’s formula gives

log
(
p(x)

)
= −

∑
i

xi log(xi) + const. (3.1.9)

Now for simplicity suppose that in an experiment you have measured the number of entities in
each category with additive Gaussian errors with standard deviations σi and denote this data
vector with y. The resulting expression for the negative logarithm of the posterior probability
density is then

f(x) =
∑
i

(xi − yi)2

2σ2
i

+
∑
i

xi log(xi) (3.1.10)

up to an additive constant. The maximum a posteriori estimate would be the minimizer of
this functional. The maximum-entropy principle gets its name from the similarity of the
regularization functional to the expression for thermodynamic entropy (which in statistical
physics is deVned by way of just such a multinomial probability consideration).

A speciVc example for the abstract model above could be the case that it is known that N
individuals of a given animal species are living in a given area, and that some estimate for
the number of individuals for subdivisions is known, for instance via a survey on the animals’
droppings. If it can be assumed that the animals do not interact with each other, then (3.1.9) is
indeed the correct expression. However, this regularization functional has come to be applied
with arbitrary regularization parameter α also for situations where there is no a-priori reason to
suppose that the unknowns result from a random assignment of quanta to categories as above,
see for instance the examples in Sect. 4.1.

In contrast to the example above, especially for the case of regularization via subjective
prior information it is often comparatively easy to formulate this knowledge in a qualitative
way (such as “the square norm of the second derivative should be small”), but much harder to
constrain quantitatively. In other words, the “correct” value for the regularization parameter α is
unknown. If the probability distribution of the noise is known suXciently well (as is usually the
case), then this problem can be solved by choosing α in such a way that the resulting residuals
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are “typical” representatives. To be speciVc, for a multivariate Gaussian distribution it is known
that ξ>C−1ξ is a random variable that follows the χ2-distribution for the given number of
degrees of freedom n. If n is large, then this distribution is clustered sharply around its expected
value of n, and α can be chosen so that the resulting F (x) neither over- nor underVts the data
y. This is known as Morozov’s principle (Morozov, 1966).

3.1.5. Sampling posterior distributions

The goal of interpreting experimental data in a Bayesian view consists in deriving the posterior
distribution p of the unknowns x, or at least its mean and covariance matrix. In the simplest
case of a linear forward map, a Gaussian prior and additive Gaussian errors, the posterior
distribution is again Gaussian, which is uniquely determined by maximizing the expression of
the posterior distribution and computing the Hessian matrix of its logarithm. In the general
case, this is not possible, however, and lacking an analytic expression of the distribution, such
information can only be realized via a sample of the distribution.

Sampling a multivariate distribution p(x) directly (by testing the probability of random
values) will be very ineXcient if there is no tight estimate of its support known a priori. The
solution to the problem lies in using Markov chain Monte Carlo algorithms, which generate cor-
related sequences of samples. Here I will explicitly consider the Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970), which exploits the regularity of the distribution to be
sampled by choosing a new sample xN+1 iteratively in the vicinity of the previous one xN . As
the old one likely corresponded to a high value of probability, so will the new one, which leads
to its eXciency. In its most basic formulation the algorithm consists in generating random trial
displacements ∆xN+1 according to some symmetric probability density p∆(∆x) = p∆(−∆x),
setting the trial value x̃N+1 = xN + ∆xN+1, and accepting x̃N+1 as xN+1 with the probability

P = min
(
p(x̃N+1)/p(xN), 1

)
, (3.1.11)

otherwise setting xN+1 = xN . It follows that if the probability density for xN is given by p(x),
so will it be for xN+1. As a consequence, the elements of the Markov chain are a sample of p
after the bias introduced by the choice of x0 has dissipated, which will happen within Vnite
time under mild assumptions on p and p∆.

A particular advantage of this algorithm for sampling posterior distributions lies in the fact
that it evaluates only quotients of probabilities, and that it is therefore not necessary for the
expression of the posterior distribution to be normalized, which would be hard to achieve in the
general case.

The eXciency of the sampling, i.e. how fast the random walk moves through parameter space,
follows from the choice of the displacement probability density p∆(x). If this distribution is
too wide, most of the trials will be rejected, as they lie in regions of low probability, and the
Markov chain will consist of long runs of identical elements. If on the other hand it is too
narrow, most of the trials will be accepted, but successive values will be highly correlated.
This is most critical in the case when p(x) is highly anisotropic. The optimal choice for p∆(x)
should reWect this anisotropy, although this information is obtained only during sampling. A
useful generalization of the Metropolis-Hastings algorithm is therefore to use an evolving pN∆(x),
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either by parametrizing the yet obtained sample x1 . . . xN as a multivariate Gaussian, or in a
model-free way to take for the new displacement the (perhaps contracted) vector between two
randomly chosen past sample points additional to some small isotropic component.

3.2. Denoising and deblurring

One of the most basic ill-posed inverse problems is denoising and/or deblurring. Consider the
problem of a measurement of a spatially varying quantity y that is known to be smooth in some
sense, while the actually measured data are aUected by additive noise. If the noise is spatially
independent, then it is intuitive that the smooth signal can be recovered. A primitive approach
would be to convolve the data by a smoothing kernel. This is a well-posed problem, but Vrst it
will only decrease the noise level, and second it can compromise signiVcant features of the data.

A better approach is to view it as an Bayesian approximation problem: Take the operator F
in (3.1.7) as the identity operator and R as a derivative operator of some order. Minimizing
(3.1.7) with respect to x will then give a smooth approximation to the data, where the conWicting
requirements of smoothness and Vt to the data are weighted by the regularization parameter α.
If the noise level is known, Morozov’s principle will provide a well-deVned solution.

The scope of this example can be extended to the case of Vnite resolution of the measurement
process (for optical measurements, this can follow from the object being out of focus). Math-
ematically, this corresponds to the measured data being a convolution of the actual spatially
varying quantity with a resolution kernel. In principle, the inverse operator is known, it is just
the convolution with the kernel that is given by inverting the resolution kernel pointwise in
the Fourier domain. This problem is ill-posed, however, because this deconvolution kernel will
grow unbounded at high spatial frequencies, and noise in the data at these frequencies will be
accordingly ampliVed. The solution consists again in regularization. As data come always with
some noise, it is actually most natural to view the problem as a combined denoising/deblurring
problem, i.e. as an instance of (3.1.7), with F the blurring operator.

Sometimes it can be the case that only the form of the blurring kernel is known or assumed
(such as Gaussian), subject to some unknown parameters (such as the width). This problem
is known as blind deconvolution. It can be modelled as a Bayesian hierarchical model, where
one considers not only the to-be-determined quantity y as unknown, but also the operator’s
parameters, the prior information about which being given by an additional prior distribution.

3.3. Reconstructing 3D-densities from projections

The problem of reconstructing three-dimensional densities from lower-dimensional projections
is probably most familiar from medical applications such as computerized X-ray tomography
(CT) or positron emission tomography (PET, see Sect. 2.1.3). In fact, “tomography” implies that
the problem is reduced to determining two-dimensional densities from projections along lines,
which correspond to slices through the three-dimensional data. I will review the classical results
here. For a more pedagogical treatment see, e.g., Feeman (2010).
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3.3.1. Direct transform methods — The Radon transform and its inversion

Johann Radon (1917) was the Vrst who deVned and solved the mathematical problem of de-
termining a two-dimensional function from its integrals over all lines (he also treated the
higher-dimensional generalization of integrals over hyperplanes). Consider the Radon transform
of a two-dimensional function f

p(θ, s) = (Rf)(θ, s) =

∫
dl f

(
cos(θ)s− sin(θ)l, sin(θ)s+ cos(θ)l

)
. (3.3.1)

This corresponds to the integrals over the set of all lines in the plane, described by θ,the enclosed
angle to the second coordinate axis, and s, the distance from the origin.

There exist a number of analytical expressions for the inverse operator R−1, of which the
probably easiest follows from the projection-slice theorem. For its derivation observe that the
Fourier transform of f along the Vrst coordinate axis is

F(f)(q1, 0) =

∫
dx1 dx2 f(x1, x2)e−ıq1x1 =

∫
dx1 p(0, x1)e−ıq1x1 = F

(
p(0, .)

)
(q1),

(3.3.2)
that is just the Fourier transform of the projections orthogonal to the Vrst coordinate axis. For
any higher-dimensional Fourier transform an orthogonal transformation of coordinates results
in the Fourier coordinates being subjected to the same transform (as this leaves the inner product
in the Fourier exponential invariant), therefore the above expression can be generalized to the
projection-slice theorem: The two-dimensional Fourier transform of f evaluated along any slice
through the origin is equal to the one-dimensional Fourier transform of the Radon transform of
f evaluated for the corresponding angle

F(f)
(
q cos(θ), q sin(θ)

)
= F

(
p(θ, .)

)
(q). (3.3.3)

A possibility for inverting the Radon transform is therefore to Fourier transform the projections
with respect to the radial coordinate s, interpolate the values star-like on a Cartesian grid, and
transform back. This method is called direct Fourier inversion. In higher dimensions it allows
generalizations in multiple ways, for instance in three dimensions it either connects the Fourier
transform over the integrals over parallel planes with the Fourier transform evaluated on the
orthogonal line through the origin, or it connects the Fourier transform over the integral over
lines with the three-dimensional transform evaluated on the orthogonal plane.

A diUerent algorithm can be obtained by applying the operator

1

(2π)2

∫ π

0

dθ

∫ ∞
−∞

dq |q|eıq(x1 cos θ+x2 sin θ) (3.3.4)

to both sides of (3.3.3). This operator is obviously just the inverse two-dimensional Fourier
transform in polar coordinates (albeit with a non-canonical coordinate domain), therefore the
left-hand side gives f(x1, x2). For the right-hand side it can be interpreted as multiplication by
the modulus of the radial coordinate followed by a one-dimensional inverse Fourier transform
evaluated at q1 cos θ + q2 sin θ, which leads to

f(x1, x2) =
1

2π

∫ π

0

dθ

(
F−1

(
|.|F

(
p(θ, .)

)))
(x1 cos θ + x2 sin θ). (3.3.5)
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3.3. Reconstructing 3D-densities from projections

DeVning the back-projection operator

(Bg)(x1, x2) =
1

π

∫ π

0

dθ g(θ, x1 cos θ + x2 sin θ) (3.3.6)

this can be written more succinctly as

f(x1, x2) =
1

2
B(θ,r)→(x1,x2)

(
F−1
t→r

(
|t|Fs→t

(
p(θ, s)

)
(θ, t)

)
(θ, r)

)
, (3.3.7)

where for clarity all transformed coordinates have been indicated. This method is called Vltered
back-projection, as it Vlters the data in the radial coordinate with a Fourier Vlter that has the
absolute value function as frequency response, and then back-projects them to the Cartesian
plane, where the action of back-projection can be understood as distributing all data points
in the projections additively back on the projection lines they correspond to. Incidentally, the
operator BR without Vltering is equal to a convolution with 1/

√
x2 + y2, which would give

yet another method to invert the Radon transform, albeit at the price of having to de-convolve a
two-dimensional kernel.

The last method to be mentioned here uses the fact that multiplying the Fourier transform
of a function by ıt is equal to transforming the Vrst derivative of the function. Therefore, the
Vltering employed in (3.3.7) is equivalent to a Vlter with a frequency response of ı times the sign
function applied to the negated derivative with respect to the radial coordinate. Such a Vltering
is equivalent to the Hilbert transformH, which leads to the expression

f = −1

2
BH∇sp. (3.3.8)

By the way, the Hilbert transform can be equivalently written as the distributional convolution
with 1/x in the Cauchy principal value sense.

All these methods have in common that they are exact inverse operators to the Radon
transform in a continuous setting. They are called direct transform methods because they give
an explicitly computable solution in terms of integral transforms. In order to use them for actual
applications, additional aspects have to be considered, such as that measured data are discrete so
that a coordinate transform between Cartesian and polar coordinates necessitates interpolation,
and that noise has to be treated robustly, which for the Vltered back-projection can be fulVlled
by using a band-limited Vlter instead of |t| (and equivalently for the other Vltering methods).
Still, for medical applications they are preferably employed, primarily because they give the
result directly without much computational eUort, in contrast to the general case for algebraic
reconstruction techniques, as discussed in the next section.

However, for the case of three-dimensional reconstruction in ACPAR, the case looks diUerent:
in contrast to the cylindrical shape of the human body, which lends itself to sectioning ap-
proaches1, for the two-photon momentum distribution it is in general not reasonable to restrict
oneself to projection directions in a given plane. In fact, in the cases of high symmetry a given
direction has a number of equivalent directions, so that automatically there is information also
about out-of-plane projection directions. As a consequence, there is a conWict of dimensions:
while the functions that the Radon transform and its inverse act upon are three-dimensional

1Actually, it would even be impossible to measure the absorption of a scan line from the head to the toes with
justiVable radiation doses.
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3. Mathematical concepts

(either by considering the Radon transform for integrals over planes or on independent sections),
the data that are in principle accessible are four-dimensional (two pixel dimensions per projec-
tion direction, and two dimensional freedom in choosing the projection direction), but can be
sampled only rather sparsely (a small number of projection directions). Using direct transform
methods would therefore entail neglecting a large amount of available information and, at the
same time, having to interpolate large ranges of the data.

3.3.2. Algebraic reconstruction techniques

An alternative way to the direct transform methods are algebraic reconstruction techniques2.
Where the former use analytical properties of the Radon transform to give an explicit expression
of its inverse, for the latter the Radon transform is just an instance of a general operator F
connecting the unknowns x with the data y in the sense of Sect. 3.1.2. In general, arriving at the
solution is computationally harder than the discrete Fourier transforms that are to be computed
for the direct transform methods, but the general formulation allows all the concepts presented
in Sect. 3.1 to be applied, such as a rigorous treatment of noise and prior information. Also note
that in contrast to the direct transform methods these techniques can cope with situations where
some projections are missing, such as for tomosynthesis (Dobbins and Godfrey, 2003) or when
metal implants in the patient render certain projections useless (Boas and Fleischmann, 2011),
or, on the other hand, where some aspects of the problem are over-determined. For all these
reasons, algebraic reconstruction techniques are to be preferred for ACPAR reconstructions.

The Radon transform is a linear operator. Therefore, after choosing some basis for the solution
space and a Tikhonov regularization functional, the maximum a posteriori estimate corresponds
to minimizing (3.1.7) with a linear operator F

x∗ = arg minx(Ax− y)>W(Ax− y) + αx>R>Rx (3.3.9)

The solution is attained where the gradient of above expression with respect to x is the zero
vector. Expanding the expression, using the fact that ∇x(w

>x) = ∇x(x
>w) = w, that as a

covariance matrix W is symmetrical and employing the Leibniz product formula leads to

0
!

= ∇xf(x)
∣∣
x∗

= 2(A>WAx∗ −A>Wy + αR>Rx∗) (3.3.10)

or
(A>WA + αR>R)x∗ = A>Wy. (3.3.11)

This expression is called the normal equation (or normal equations when understood as one
scalar equation per datum), reducing the problem to the Veld of linear algebra, which justiVes
the name of the technique. The solution to the normal equation is conveniently written as

x∗ = (A>WA + αR>R)\(A>Wy), (3.3.12)

2Note that the nomenclature here is perhaps a bit unfortunate. What I call here algebraic reconstruction techniques
is canonically called iterative reconstruction techniques or series expansion methods (Herman and Lent, 1976),
of which more narrowly deVned algebraic reconstruction techniques are a strict subset (Gordon, Bender, and
Herman, 1970). Oddly, though, in principle the solution does not need to be arrived at iteratively, nor is it
obvious in which sense a series would be expanded here.
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3.4. Segmentation

where the backslash operator means multiplication by the inverse from the left. For the actual
implementation any algorithm for numerically solving a system of linear equations can be
chosen. For suXcient α, the problem will be well-conditioned.

3.3.3. Cormack’s method

Unaware of Radon’s work, Allan McLeod Cormack (1963) gave a diUerent solution to the
tomographic projection problem, with the explicit intention to apply it for medical imaging.
In the initial formulation he expanded both the unknown density f and the projections p
into Fourier series for each choice of the radial coordinate and gave an explicit expression
for a given r-dependent Fourier component of f in terms of an integral equation involving
the corresponding Fourier component of p, still in the vein of the direct transform methods.
In a later modiVcation, however, he expanded f also in the radial coordinate into a series of
orthogonal polynomials and showed that the Radon transform of these basis polynomials gives
again orthogonal polynomials (Cormack, 1964). In other words, he gave an explicit expression
for the singular value decomposition of the Radon transform, and therefore a simple recipe
for its inversion. For this work, he received the 1979 Nobel Prize for Medicine and Physiology,
together with Godfrey Newbold HounsVeld, who built the Vrst working computerized X-ray
tomograph.

This approach is somehow intermediate between the direct transform methods and algebraic
reconstruction techniques: It can be seen as an instance of the latter, where the bases in
projection and reconstruction space have been chosen so that the operator matrix A is diagonal.
Restricting the basis set implicitly regularizes the problem due to the orthogonality of the
polynomials, and it allows for non-constant weights to be speciVed when expanding the data
in the basis set. The disadvantages of the method consist in the fact that, analogous to the
direct transform methods, the orthogonality of the basis is conditional on the projection angles
being evenly spaced and that it again is a strictly tomographical method, i.e. that it can include
information only from projection directions in a single plane. In this sense, the algorithm
dictates how the measurements have to be made. In addition, it is only stable for quite small
bases (Cormack, 1964) and is therefore unable to describe sharp edges.

Related methods that expand the density in spherical harmonics (and therefore can enforce
given three-dimensional point symmetries) have been derived by Mijnarends (1967) for plane
integrals and Pecora (1987) for line integrals.

3.4. Segmentation

The other major point to be considered for Fermi surface determination from ACPAR data,
apart from the reconstruction of three-dimensional densities from the projections, is how to
determine the Fermi surface(s) from the three-dimensional densities. As detailed in Sect. 2.4.9,
the two-photon momentum density shows a step of varying height at each Fermi surface sheet,
with a higher density in the regions inside the Fermi surface than outside, and is smooth away
from the Fermi surface. In the community of applied mathematics, the equivalent problem of
partitioning a domain into subdomains along discontinuities is known as (image) segmentation,
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3. Mathematical concepts

here transferred to three-dimensional space.

3.4.1. Description of shapes

In the most general setting, the edges are just a general set Γ ⊂ R3. However, such a general
description is not amenable to analysis, therefore alternative descriptions that give edges that
are inherently regular in some sense are preferred. I will present the two main approaches in
the following (Delfour and Zolésio, 2011):

In the one view, the edge shapes themselves are the fundamental variables. They can be either
deVned directly by a speciVc parametrization on a two-dimensional domain, or they can be
obtained by applying deformations deVned on three-dimensional space to a given initial shape
(such as a sphere). In either case, the induced topology of the resulting shape (e.g. whether it
has holes or not) is obviously Vxed, given either by the domain of the parametrization or the
initial shape. Another approach is to consider functions on three-dimensional space fi(~k) as
the fundamental variables and deVne the edges implicitly as the solution set of fi(~k) = 0. This
concept is known as level set formulation (Osher and Sethian, 1988).

Principally, all these mentioned models can be implemented both in a parametrized way (so
that the actual free variables are, for instance, Fourier coeXcients that describe the deformation
or the level set function, respectively) or in a generic parameter-free way (describing the
functions by a numerical discretization that is updated in some way). Also, the regularity
of the resulting shapes has to be guaranteed, either implicitly by the construction of the
parametrization (such as by restricting the number of considered Fourier components) or
explicitly by a regularization functional on the respective functions in the parameter-free case.

Apart from questions of implementation, the various approaches diUer qualitatively in the
kinds of shapes they can describe: Level sets in the basic formulation can describe only manifolds
that are topologically closed (but not necessarily compact). In contrast, treating the shapes
explicitly also allows for holes in the shapes. On the other hand, continuous perturbations
of the level set functions can lead to changes in the topology of the edges, such as that one
manifolds splits into two disconnected manifolds, which clearly cannot happen via continuous
perturbations of the shapes themselves. However, explicit shape parametrization, in contrast to
the other approaches, is able to smoothly lead to a manifold that intersects itself. By generalizing
above approaches, a multitude of qualitatively diUerent situations can be described: First, it is
obvious that several manifolds that behave independently can be obtained trivially by a union of
independent manifolds. More interesting is the possibility of prescribing a given shape topology
by subjecting an initial shape composed of a number of manifolds (such as intersecting spheres)
to a common deformation. In the level set approach, nested shapes follow from considering
diUerent levels of the same level set function. The problem of segmentation in the narrow
sense of the word (dividing a domain Ω into subsets Ri with Ω =

⋃
iRi that overlap only on

the boundary) is probably most naturally treated by considering one level set function Ei for
each subdomain and deVning Ri = {x ∈ Ω|fi(x) ≤ fj(x)∀j 6= i}. Finally, also complicated
situations can be described, e.g. a formulation Γ = {x ∈ Ω|f1(x) = 0 ∧ f2(x) ≤ 0} allows for
holes in the shapes.

These diUerent characteristics of the respective methods suggest that for a given problem the
a priori knowledge on the shapes leads to an evident choice of the framework to be preferred.
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3.4. Segmentation

3.4.2. Driving the agreement — cost functionals

For determining an edge set that describes the data well, the agreement has to be quantiVed.
For the problem of Vnding edges Γ within otherwise smoothly varying data g essentially two
basic approaches are mainly being used, both originally proposed for computer vision. On the
one hand there is the Mumford-Shah functional (Mumford and Shah, 1989). Its idea is to Vnd a
parsimonious edge set so that the data can be well described away from the edges by a smooth
function. SpeciVcally it reads

E(f,Γ) = µ2

∫
Ω

(f − g)2 +

∫
Ω\Γ
||∇f ||2 + ν|Γ|, (3.4.1)

where |Γ| denotes some concept of measure, e.g. the HausdorU measure. The parameters µ and
ν decide on the weights given to the conWicting demands, which can be understood via the
extreme cases of dropping one of the three terms: if µ is zero, the minimum will be attained
where f is any constant function and Γ the empty set, while if µ and ν go to inVnity, the
resulting f will be equal to g and again Γ will be the empty set. Finally, the requirement for
parsimonity follows from the insight that if ν is zero, Γ will tend towards the largest set within
the considered space (if it exists), and f will be piecewise constant on the subdomains cut out
by Γ. Minimizing this functional with respect to f and Γ gives an optimal set of edges Γ.

Above expression corresponds to the original one given by Mumford and Shah (1989). They
prove that in their original two-dimensional formulation the minimum of expression (3.4.1)
actually exists, when Γ is allowed to vary over all Vnite sets of C2-arcs. Obviously, the approach
can be generalized, such as by considering measures of agreement other than the L2-norm, for
instance the L1-norm, leading to total variation regularization (Rudin, Osher, and Fatemi, 1992),
or criteria for smoothness diUerent from a small norm of the Vrst derivative. For the actual
implementation, often an approach along the lines of Ambrosio and Tortorelli (1990) is followed,
where the edges are again described implicitly via a smooth function.

A diUerent idea was followed by Kass, Witkin, and Terzopoulos (1988): they proposed to use
a functional

E(Γ) = µ

∫
ds|Γ′(s)|2 + ν

∫
ds|Γ′′(s)|2 −

∫
ds
∣∣∇g(Γ(s)

)∣∣2 (3.4.2)

that considers only the edges Γ as independent variables and actively searches for the regions of
highest gradient in the data g. In fact, above choice for the data-dependent term is only one of
several possibilities considered in the original publication. Again, the measure of the edge set
(Vrst term in (3.4.2)) and its curvature (second term) have to be regularized. The authors termed
shapes subject to this cost functional snakes due to the way they converge to the edges during
shape optimization.

The diUerent formulations correspond to diUerent notions of edges: while for the Mumford-
Shah functional the optimal edges separate regions of diUerent average g (in order to minimize
the necessary gradient in f ), snakes will converge to sharp features. Obviously, the former
concept will show a much better resistance to small-scale uncorrelated noise such as present
in count-rate limited experiments, while snakes will be preferable for applications such as
computer vision, where noise is of no concern.
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3.4.3. Shape determination

For determining the edges that optimally describe the data, in principle two conceptual ap-
proaches are followed: In the majority of cases one considers incremental modiVcations of the
shapes. If the cost functional is deVned in local terms (i.e. in terms of integrals) then an intuitive
image for this concept is the problem from condensed matter physics where the material can
react by viscous Wow to forces that result from some energy functional, which is identiVed with
the cost functional of shape determination. Variational calculus then gives descent directions,
which can be interpreted as local velocities in the physical model and be used to propagate the
shape (Santosa, 1996; Delfour and Zolésio, 2011). This concept is called shape optimization.

This way of incrementally optimizing the shapes by small deformations is applicable to
both explicit descriptions of the shapes as well as level set descriptions (where the values of
the level set functions Wow according to the velocity Veld). The more natural implementation
would be in a parameter-free way, leading to the standard problem of numerically solving a
partial integro-diUerential equation on a discretization grid, although with more eUort also an
application with parametrized shapes/level set functions is conceivable. Such a time evolution
will converge to a locally optimal solution; standard schemes such as starting from diUerent
initial conditions (in this case corresponding to diUerent shape topologies) can be used to Vnd
the global optimum with some certainty.

While this approach naturally gives the “best” shapes for given data, more work would have
to be done for obtaining further statistical information, such as the estimated variance due to
noise in the data. Conceivably, a way to generalize this approach would be to add a stochastic
term to the force equation, leading to a Langevin-type equation for the evolution of the shapes
(Langevin, 1908). Varying the magnitude of the stochastic term so that the mean data misVt
corresponds to the experimental noise would in the end lead to a sequence of representative
reconstructions, although additional analysis would be needed to obtain the functional form
of the prior probability distribution such an approach corresponds to. Also, it is obvious that
the obtained sample reconstructions are highly correlated, indicating the ineXciency of such a
method.

Especially for applications where the results are to be determined in a Bayesian sense, i.e.
as posterior probability distributions, treating the problem as an instance of a general inverse
problem seems to be superior. Here a parametrized description will be preferable. Standard
approaches for sampling the posterior distribution of the corresponding parameter vectors as
discussed in Sect. 3.1.5 can then be used.
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4. ACPAR data interpretation

With the exposition of the physics behind the problem and selected mathematical approaches
relevant to its solution in the previous chapters, I will in this chapter Vrst review past ap-
proaches in the physical community, then state my chosen formulation, and Vnally discuss its
implementation.

4.1. Discussion of previous approaches

Here I will give a survey over representative approaches to some of the points considered above
that have been employed by the ACPAR community, and discuss their speciVc shortcomings.
The experimental technique of two-dimensional ACPAR originated in the 1980s as discussed
in Sect. 2.1.2, a time where digital computing was still much less powerful than today. In the
meantime, there have been no notable experimental break-throughs, which perhaps explains
that the used data interpretation approaches still seem to conVne themselves to those past
restrictions. A general remark pertains to all published approaches: the diUerent aspects of the
problem (deconvolving the experimental resolution, reconstruction, edge detection) are always
approached in a sequential manner, which is undesirable as diUerent biases are introduced at
each step, compromising the later steps.

For a recent review of ACPAR articles using three-dimensional reconstruction methods (which
nowadays comprise the largest part of ACPAR publications) with some claim of completeness
see Kontrym-Sznajd (2009).

4.1.1. Data prettiVcation

The primary data as obtained in an ACPAR experiment are not the abstract projections as
assumed by the mathematical algorithms presented in Chap. 3. The initial data handling that
is conventionally applied is rather uninspiring and therefore mostly detailed in PhD theses
such as Biasini (1995) and Kruseman (1999). In most cases, the experimental data take the
form of two-dimensional histograms of the deviations from collinear propagation directions
as detected on the two detectors, of a size of a few hundred bins squared. The initial steps
consist normally in centring these histograms (so that the exactly collinear events, which can be
oU by a few pixels due to miscalibration of the detector positions, end up in the centre of the
histogram) and rotating (so that a high-symmetry direction of the crystal ends up for instance
in the exactly vertical direction, again to correct miscalibrations on the order of one degree).
It is clear that these operations require interpolation and therefore lead to a resolution loss on
the order of one pixel and destroy the Poissonian statistics of the data. However, with current
communication and storage capacities it is possible to record all events on a PC instead of online
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4. ACPAR data interpretation

histogramming, so that the histogram can be computed afterwards on the properly transformed
event coordinates without loss of resolution (Leitner, Ceeh, and Weber, 2012).

Another aspect is the so-called momentum sampling function. Because of the Vnite size
of the detectors, the probability for a pair of photons with a given deviation of propagation
directions to fall on the respective detectors depends on the deviation: for a collinear pair it
suXces if one photon reaches its detector for the other to reach it also (under the assumption
of symmetric detector positions), while for non-zero deviations the probability decreases. The
resulting momentum sampling function is given by the convolution of the respective detector
response functions and is normally used to normalize the histograms to give (noisy) projections
in the mathematical sense. Of course, the absolute error of the outermost pixels is greatly
ampliVed in this way.

If the projections are along high-symmetry directions of the crystal, they should reWect this
symmetry. In this case the data are often folded to conform to this symmetry, which decreases
the pixel-wise relative statistical error, but introduces additional correlations between the values.
Also, it is conceivable that such a symmetrization ampliVes systematic errors, if the actual
alignment of the crystal deviates from the nominal high-symmetry one.

The last step of initial data handling that is sometimes applied concerns the resolution. With
the present detectors, statistical and systematic errors in position assignment, additional to
the anisotropic contribution due to the positron spot size, are quite large compared to the
features to be resolved (Leitner, Ceeh, and Weber, 2012). As discussed in Sect. 3.2, correcting the
data for these eUects is an ill-posed problem. The used approaches rely on maximum-entropy
regularization (Fretwell et al., 1995) or related concepts (Gerhardt et al., 1998). However, there
is no a-priori reason why the entropy of the projections should be small, in fact it is clear that
the projections will have the highest intensity in the centre and decay over some four orders of
magnitude towards large deviations, in contrast to the a-priori assumption of a multi-nomial
distribution with equal values for each pixel that justiVes the maximum-entropy approach
(see the example in Sect. 3.1.4). A still more elaborate approach that expressly smooths the
data is given by Chiba et al. (2007). It is needless to say that the properties of the resulting
statistical and systematic errors in the corrected projections will be virtually impossible to state.
Finally, Kruseman (1999) proposes a diametrically opposed solution to the problem of anisotropic
resolutions, which is to worsen the resolution in the vertical dimension by convolution with a
smearing kernel in order to avoid introducing artefacts in deconvolution.

4.1.2. Interpretation of spectra

In the early times, the interpretation of the data was done directly in terms of the projections,
after having cleansed them of above-mentioned eUects. Here two ways have been demonstrated.
The Vrst is based upon the observation that the actual signal of modulations in the conduction
electron density projections due to the Fermi surface breaks is dwarfed by the more-or-less
isotropic signal of Vlled bands, which has its maximum at the centre and decays outwards.
The solution is then to subtract the radial average from the projections so that the anisotropic
contributions, which should be mostly due to conduction bands, remain. An example is given by
Haghighi et al. (1991), where faint anisotropic signatures in a high-temperature superconductor
have been isolated that supposedly conform well to theoretical predictions.
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The starting point of the second approach lies in the non-interacting particle expression for
the two-photon momentum density (2.4.14) for the case of a constant positron wave function
ψp. Each electron wave function ψe has an L2-norm of one (as the absolute square corresponds
to its location probability density), therefore by Parseval’s theorem its Fourier transform is
also normalized. Due to its Bloch form (2.4.11), its contribution to the two-photon momentum
density is discrete, located at the positions of the suitably shifted reciprocal lattice. If now one
folds all the higher-momentum components back into the Vrst Brillouin zone, it will sum to one.
As a consequence, the contribution of Vlled bands after this backfolding is constant in reciprocal
space, and all the modulation is due to the jumps in occupation at the Fermi surface sheets. This
statement is called the LCW theorem (Lock, Crisp, and West, 1973).

For enhancing the edges Vltering techniques have been proposed, such as the method of
O’Brien et al. (1995), which is eUectively a band-limited second derivative, or an eUective abuse
of the maximum-entropy resolution deconvolution mentioned above (Dugdale et al., 1994).
The rationale behind these approaches lies in the fact that while for a realistic positron wave
function and many-body eUects the contribution of a Vlled band is not exactly constant, its
variation after backfolding will be smooth, so that the Vltering techniques enhance the edges
compared to these smooth variations.

For layered systems like the cuprate superconductors studied by Haghighi et al. (1991), where
the relevant aspects of the electronic structure are eUectively two-dimensional, it may be a
valid approach to interpret directly the projection orthogonal to the layers. For general systems,
however, the best one can hope for with such an interpretation is to be able to identify the
most prominent features qualitatively. More information can be obtained by the reconstruction
techniques to be discussed in the next section.

4.1.3. Reconstruction

Nowadays, in most cases there is the ambition to reconstruct the full three-dimensional infor-
mation from the results of an ACPAR experiment, where algorithms along the lines of Sect. 3.3
are used. I will discuss the used methods here only generally, for a comprehensive list of the
pertinent publications see Kontrym-Sznajd (2009).

Direct Fourier inversion in the two-dimensional formulation, the Vltered back-projection and
Cormack’s method or variants thereof have been used with approximately equal shares in nearly
all published ACPAR reconstructions. In these methods, the problem of the determination of
a three-dimensional density is reduced to independently determining the density on parallel
planes. Such an approach is sub-optimal even in the absence of symmetries, such as for
medical imaging, as in general the three-dimensional density to be determined will show
as high smoothness within the slices as between them (which is neglected by independent
reconstructions). For ACPAR, where the density will display the strict symmetries required
by the crystallinity, this is even more severe, as discussed at the end of Sect. 3.3.1. In principle
it is possible to average the reconstructed data so that they display the symmetry, although
this propagates the between-slices non-regularity into all dimensions. Kontrym-Sznajd et al.
(2004) give a somewhat circuitous solution to this problem: they reconstruct the density in slices
and then regularize these data by reparametrizing in terms of the spherical harmonics that
are in accordance with the crystal symmetries. Another disadvantage of these methods lies in
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their requirement of speciVc projection directions: deviations within the reconstruction plane,
perhaps due to misalignment, make the reconstruction algorithm only more complicated, but
these algorithms are in principle not able to treat an out-of-plane deviation.

A problem speciVc to the direct transform methods lies in the fact that diUerent from
computerized X-ray tomography, where the maximum absorption is on the order of 50% and
the Poisson noise level has therefore a comparable magnitude for each data point, in ACPAR
the density varies by orders of magnitude, and the absolute noise level varies accordingly. For
direct transform methods the weighting can only be speciVed locally, however, and therefore
they cannot account for this fact.

The original rationale behind all these historic methods (either direct transform methods
or expansion in suitable basis function) was that they allowed for an eXcient numerical
implementation (in terms of discrete Fourier transforms or the solution of small, sparse systems
of linear equations). Even in recent publications claims on the prohibitive ineXciency of
treating reconstruction as an instance of a generic inverse problem along the lines of algebraic
reconstruction techniques as presented in Sect. 3.3.2 can be found (e.g. Feeman, 2010). While
this may be true for medical applications, in ACPAR the acquisition of a set of projections of
high statistical quality takes on the order of a few weeks. Thus it seems highly warranted to
employ the most potent algorithms for reconstruction, even if these take noticeable numerical
eUort.

Only very recently such an algebraic approach has been used for the reconstruction of ACPAR
data (Pylak, Kontrym-Sznajd, and Dobrzyński, 2011). However, the unphysical tendency of
their maximum-entropy formulation towards Watness of the reconstructed densities has been
discussed already above.

4.1.4. Fermi surface determination

In principle, the Fermi surface should give rise to sharp steps in the reconstructed three-
dimensional density. Actually, however, these edges are only poorly deVned: band-limited direct
transform methods and reconstructions by expansion in Vnite series cannot describe edges and
lead to a smoothing (additional to the eUect of Vnite resolution, if this is not corrected for), while
in contrast a maximum-entropy reconstruction does not favour smoothness, so that the statistical
noise in the data will be reWected in voxel-to-voxel noise in the reconstructions. In most cases
the reconstructed three-dimensional density is therefore interpreted only qualitatively in terms
of the topology of the Fermi surface.

A few attempts have been made at quantitative Fermi surface reconstructions: Biasini (2000)
proposed a phenomenological parametrization of the Fermi surface and computed directly the
LCW-folded density for a few high-symmetry projections in the non-interacting particle model
with a constant positron wave function. He then determined the Fermi surface parameters by
minimizing the deviations from the LCW-folded experimental projections. He conceded that
positron wave function and many-body eUects (i.e. that the LCW theorem is not exact in this
case) will lead to systematic errors.

Later he also proposed a radically diUerent, model-free approach (Biasini et al., 2002): after
reconstructing the three-dimensional density, he deVned the Fermi surface as the iso-contour to
a certain density level ρ0 so that the variation of the enclosed volume with respect to ρ0 relative
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to the surface area is minimized (i.e. that the mean steepness on the surface is maximized).
However, also this approach depends on the LCW theorem being valid, as otherwise the Fermi
surface is no iso-contour at Vnite resolutions. This is reWected in the fact that the maximum in
the steepness is not very well deVned.

Probably the most involved published method for determining Fermi surfaces is due to
Laverock et al. (2010): they calculated the electronic wave functions by ab-initio methods, and
then Vtted the resulting LCW-folded projections of the two-photon momentum densities to the
experimentally measured projections by applying both shifts in energy to the distinct bands and
varying the contribution of the states (which should mimic a diUerent enhancement for diUerent
atomic states). While it is questionable inhowfar the Vtted parameters are physically meaningful,
it can be seen as just a phenomenological model that tries to reproduce the sharp edges due to the
Fermi surface and the smooth variations due to positron wave function eUects and many-body
eUects. However, such an interpretation cannot be counted any more as experimental physics,
because it requires the calculated band structure to capture the physics of the system, as the
only freedom in the shape of the Fermi surface sheets lies in the rigid band shift.

4.2. The proposed model

Here I motivate a model to solve the physical problem as outlined in Sect. 2.5.
A major shortcoming of the previous approaches lies in the fact that they comprise many

sequential steps of data manipulation. An exemplary chain of data handling could consist in
deconvolving the resolution out of the projections (with some regularization, perhaps including
explicit smoothing), centring and rotating the projections, dividing by the momentum sampling
function, symmetrizing the projections, reconstructing by some series expansion, symmetrizing
the reconstructed three-dimensional density, applying some edge-enhancing Vlter, and Vnding
the Fermi surface. Propagating the estimated statistical and systematic errors through these
steps seems impossible, and at some steps there are even additional systematic biases introduced
due to regularization (such as deconvolving, reconstructing and Vltering). In contrast, the
formulation as a general inverse problem allows to concatenate all these steps into the forward
operator, which is then solved under explicit regularization by prior information.

A formulation as a general inverse problem will also be more eXcient with respect to the
information obtainable with a given statistical investment during the experiment (i.e. the
radiation dose for computerized X-ray tomography, and the data collection time for count-
rate limited applications such as ACPAR): Radon has shown that the set of all line integrals
determines the density in a plane, therefore sectioning approaches work. Experimentally,
however, the accessible data are the line integrals in three-dimensional space (apart from
geometrical constraints due to the cylindrical shape of the human body in medical tomography).
Direct inversion methods in principle cannot be generalized to such situations, as the inverse
problem would be overdetermined. For algebraic reconstruction techniques this is possible,
however, and as will be discussed in more detail in Sect. 5.5, the matrix to be inverted in a linear
inverse problem will be better conditioned if the available data is more independent, resulting
in less uncertainty in the reconstruction with a given level of statistics in the data. For the
reconstruction of densities with certain known three-dimensional symmetries, the advantage
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4. ACPAR data interpretation

of a general formulation is even more obvious. Additionally, such an approach allows also for
modelling unknown misorientations during the experiment (treating the corresponding Euler
angles as additional variables).

Here I propose to formulate the model by explicitly taking the steps at the Fermi surface,
together with the smooth variation in between, into account. SpeciVcally, the unknowns
are to consist of a geometrical variable Γ (the Fermi surface) and a functional variable ρ
(the density). I will allow for spatially varying densities, but require smoothness by explicit
regularization in terms of the L2-norm of the discrete second derivative away from the Fermi
surface (corresponding to an l2-norm regularization of the densities’ Fourier components with a
weight proportional to the square of the reciprocal coordinate), as dictated by physics. In such
an approach already the reconstruction drives the evolution of the Fermi surface so that the
features of the projections can be described by densities that are as smooth as possible. The
model can also be seen as a generalization of the Mumford-Shah problem (3.4.1), where in the
Vrst term not the discrepancy between Vtted data f and measured data g is quantiVed, but
between F (ρ) and g, where F is the projection operator and ρ the density. Such a model has
already been proposed for the concurrent inversion and segmentation of X-ray tomography
data by Ramlau and Ring (2007) and Klann and Ramlau (2013), but with piece-wise constant
densities away from the edges. In contrast, the tendency to maximize the steps at the edges of a
formulation guided by the energy functional for (two-dimensional) snakes would contradict
physical a priori knowledge.

For the description of the Fermi surface a level set formulation, as opposed to an explicit
parametrization, is preferable. This is because the Fermi surface physically is the level set of the
band energies, see Sect. 2.4.7, and therefore a level set description leads to the correct topology
(such as no holes and no self-intersecting). For the general case of multiple Fermi surface sheets,
the correct positions and crossing behaviours with respect to each other can be guaranteed by
enforcing that the band energies conform to the required symmetries, which is conceptually
easier. Also, the physical a priori knowledge about the Fermi surface shapes follows from the
knowledge on the behaviour of the band energies, which leads to a much more natural Bayesian
interpretation of regularization.

More speciVcally, it can be expected that the level set functions (corresponding to the band
energies) will be smooth in the sense that they can be described by a limited number of Fourier
components, which motivates a corresponding parametrization. Physically, this corresponds
to a tight-binding formulation (see Sect. 2.4.5). The crystalline symmetry of the band energies
can readily be enforced by restricting the set of non-zero Fourier components. Also, for a
quantitative determination of the Fermi surface shape in ACPAR the topology of the Fermi
surface can be assumed as known. If this topology is enforced in another way, it is therefore not
necessary for the Fermi surface area to be regularized, as the Fourier-limited level set functions
suXce to guarantee regular edges in accordance with the physical requirements.

A main diUerence of the considered problem to the general Mumford-Shah model is the fact
that the contributions from the distinct bands are strictly positive. The Fermi surface sheets have
a well-deVned orientation, and when crossing from the outside to the inside the density will
jump by a positive amount. Therefore (and for implementational reasons detailed in Sect. 4.3.3)
it is actually beneVcial to consider for each band that crosses the Fermi surface an unknown
positive density deVned on the whole reciprocal space, additional to a density due to core bands.
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The sum density is then the sum over all band densities multiplied by the characteristic functions
of the regions inside the respective Fermi surface sheets.

In contrast to the more popular case of image processing, where the result will be interpreted
qualitatively by human vision and pattern recognition, with physical experiments the uncer-
tainty is an integral constituent of quantitative results. This implies a Bayesian framework,
where a representative sample of Fermi surface realizations in agreement with the data is to be
produced. As already discussed in Sect. 3.4.3, this practically excludes the possibility to employ
shape optimization, so the problem will be treated as an instance of a general inverse problem.
Taking in all above considerations, its formulation can be cast in

f(ρ,Γ) = − log
(
P (b|AΓρ)

)
+ α||D2ρ||2, (4.2.1)

where f(ρ,Γ) is the negative logarithm of the posterior probability, b are the measured data, ρ
the band densities, AΓ is the linear projection operator taking into account all the experimental
parameters and the occupations via Γ (described over the Fourier coeXcients), P the probability
for observing b under Poissonian statistics, and D2 the discrete Laplacian operator. The
regularization parameter α can be determined via Morozov’s principle, as the noise level is
known due to Poisson statistics. Marginalizing the resulting posterior distribution with respect
to ρ leads directly to the resulting distribution of Γ, which is the objective of the experiment.
Additionally, an explicit dependence of AΓ on small misalignments or unknown resolution can
be included. Depending on the information content of the data, these additional degrees of
freedom can either be determined, or they lead to a wider posterior distribution in Γ, treating
possible systematic errors in a statistically rigorous way.

4.3. Implementation

Here I will present the numerical implementation of the model proposed in Sect. 4.2 in some
detail. It was accomplished for the most part in GNU Octave, which is an interpreted high-level
framework for numerical mathematics. The implementation is quite eXcient, which for an
interpreted language means that apart from initialization much data should be processed per
instruction in the innermost loops (this concept is known as vectorization). The most critical
operations have been implemented in low-level code (see Sect. A.3).

As a demonstration, in Chap. 5 the algorithms will be applied to the case of copper, which
is a face-centred cubic system with one Fermi surface sheet. For eXciency of labour, these
parameters have been hard-coded into the implementation given below; a generalization to
diUerent symmetries or more Fermi surface sheets would be trivial but time-consuming.

4.3.1. Scales of the reconstruction problem

The principal scale of the reconstruction is set by the numbers Ne (e for extended), which gives
the number of reconstructed cubic voxels per dimension, and Nc (c for cell), the number of
voxels per dimension of the reciprocal space cubic unit cell (note that in the case of a face-centred
lattice, the cubic cell is not primitive). This formulation restricts the unit cell dimensions to be a
multiple of the voxel dimension, which is beneVcial for the implementation. The projections are
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4. ACPAR data interpretation

discretized into square pixels, with Np pixels per dimension (p for projection). The ratio s of
the projection pixel size to the voxel size can be speciVed. Values close to one are desirable (as
for s� 1 resolution is lost, while for s� 1 the reconstruction is unnecessarily hard without
gain in information), but for the reconstruction of experimental data a deviation from one will
be necessary, because the pixel size is Vxed by the detector, and the voxel size has to be some
fraction of the unit cell. For a more eXcient formulation, the densities are described as a linear
combination of localized basis functions, with Nb degrees of freedom per dimension (b for
basis). Ne, Nc and Nb are restricted to even numbers, and the formulation is symmetric, i.e.
there are Ne/2 voxels per dimension on each side of the centre of reconstructed space. Due
to the cubic symmetry, the irreducible wedge contains only the 48th part of the whole space,
which corresponds to Ni = 1

48
Nb(Nb + 2)(Nb + 4) inequivalent coeXcients (i for irreducible).

The total number of unknowns describing the density for the case of one Fermi surface sheet is
therefore 2Ni.

For the demonstration of the algorithm in Chap. 5, the values have been chosen as Ne =
144, Nc = 48, Np = 144, and Nb = 36, leading to Ni = 1140 independent coeXcients per band.
With these values the reconstruction allocates about 1.5 GB of main memory, for much larger
problems some optimization would have to be done.

4.3.2. Matrix product form of forward operator

The forward operator (mapping the coeXcients ρ describing the band densities to the resulting
projections) for a given Fermi surface and experimental parameters (such as orientations and
resolutions) is linear, so it can be described as the product of matrices corresponding to the
distinct steps, acting on the density vector. Each item in the list below corresponds to one such
matrix.

• Apply the operations of the point symmetry group to the coeXcients of the basis functions
in the irreducible wedge to restore the full description of the Vrst octant. This corresponds
to a block diagonal matrix with the same (Nb/2)3-by-Ni matrix two times on the diagonal
(as the action on both band densities is the same).

• Compute the Vne-grained densities on the octant via a (Ne/2)3-by-(Nb/2)3 matrix, again
as two blocks of a block-diagonal matrix. For the localized basis functions a variety of
choices are possible, here a tent-like form corresponding to the Vne-grained densities
being tri-linear interpolations between values on a coarser grid with mirror boundary
conditions has been chosen.

• Multiply the densities pointwise by the occupation of the respective voxels in the respec-
tive bands, given by the Fermi surface geometry, and collapse to a sum density. This is
eUected by the horizontal concatenation of two (Ne/2)3-by-(Ne/2)3 diagonal matrices.
For the density due to the Vlled core bands, this is just the identity matrix, while for the
conduction band it is a diagonal matrix that has as its entries the fractional occupation of
the respective voxels. For the computation of these occupations see Sect. 4.3.3.

• Mirror this sum density on one octant to the other octants by a N3
e -by-(Ne/2)3 matrix.
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• Project the three-dimensional densities along the chosen projection directions, imple-
mented as the vertical concatenation of N2

p -by-N3
e matrices. For their deVnition see

Sect. 4.3.4.

• Convolve the projections with the resolution kernel (modelled as Gaussian with distinct
horizontal and vertical component) with periodic boundary conditions, which is also
implemented as multiplication by a block diagonal matrix with identical N2

p -by-N2
p

matrix entries. In order to ensure sparsity, the Gaussian is truncated after three standard
deviations.

• Multiply the projections by the respective momentum sampling functions, which corre-
sponds to a diagonal matrix.

Finally, add a constant background to the projections, which for notational simplicity can be
considered as an additional degree of freedom of the densities and propagated through above
matrix products. All these matrices are very sparse, and even their product, which corresponds
to the forward operator, has only about 25% Vlling. Code for the smaller functions mentioned
above is given in Sect. A.1.

The regularization operator in (4.2.1) is implemented as discrete Laplacian acting with mirror
boundary conditions on the Vne-grained densities on the octant (its code is also given in
Sect. A.1), i.e. D2 is to be understood in the following as the product of this Laplacian and the
matrices corresponding to the Vrst two items in the above list.

4.3.3. Describing the Fermi surface and determining band occupations

The occupations of the voxels for the respective bands are determined by the fraction of
the voxel that is within the Fermi surface. For a face-centred cubic lattice, the atoms sit at
positions 1

2
(m1,m2,m3), where the mi are integer numbers with

∑
imi even (see Fig. 2.3 for

an illustration). With the deVnition (2.3.1), the corresponding reciprocal lattice is given by
2π(n1, n2, n3) with either all ni even or odd. This is the body-centred cubic lattice. A function
that is invariant with respect to translation by any reciprocal lattice vector (i.e. periodic within
the Vrst Brillouin zone), such as the band dispersion, can have only Fourier coeXcients for
the reciprocal lattice of the reciprocal lattice, that means again the direct space face-centred
lattice. If the function in addition has to display the point symmetry of the lattice, the Fourier
coeXcients for lattice vectors that can be related by a point symmetry operation have to agree.

With these considerations the band dispersion can be described by a vector of Fourier
coeXcients fi corresponding to an ordered list of inequivalent direct space lattice vectors ~si,
speciVcally ~s0 = (0, 0, 0), ~s1 = (1

2
, 1

2
, 0), ~s2 = (1, 0, 0) and so on, so that

f(~q) = −
∑
i

γi
∑
~s≡~si

e−ı~q~si . (4.3.1)

Here two vectors ~s are considered equivalent if they can be mapped onto each other by a point
symmetry operation.

The Fermi surface Γ is the level set of this function so that the volume enclosed within the
Fermi surface is correct (half the volume of the Brillouin zone per conduction electron). The
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corresponding implicitly deVned energy is the Fermi energy. As the value of γ0 would only shift
the Fermi energy, it can be set to zero. Additionally, the resulting level set is not aUected by a
scalar multiplication of the coeXcient vector, so γ1 can be set to one. The additional entries of γ
correspond to the Fermi surface shape’s degrees of freedom.

For calculating the occupations of the voxels within the cubic cell from a given coeXcient
vector γ the energy and its gradient at the centres of all voxels are computed via (4.3.1),
implemented as fast Fourier transform, and as an initial guess the Fermi energy is set to zero
(corresponding to the mean energy over the Brillouin zone, as γ0 = 0). Then the corresponding
voxel occupations are computed via the Gilat-Raubenheimer method, see Sect. A.2. These
occupations are summed and compared to the required value, and the Fermi energy is updated
by Newton’s method. The necessary derivatives of the occupations are computed as by-product
of the Gilat-Raubenheimer method.

The Gilat-Raubenheimer method computes for each voxel the fraction within the Fermi
surface analytically under the assumption of a linear variation of the band energy within
the voxel. If the discretization is Vne enough to capture the Fermi surface shape accurately,
then the linear approximation is clearly valid. Note that in this formulation the sum density
varies continuously with the Fermi surface coeXcients γ in any Lp-norm with p <∞ (but not
point-wise) in a continuum setting. In the numerical discretization it is obviously continuous
even voxel-wise, which is in contrast to a formulation that checks only the value at the voxel
centre and sets the whole voxel to zero or one. This simple implementation is made possible by
considering distinct densities for each band; a formulation of one density with allowed edges
would have to specify two densities only for those voxels that are touched by the Fermi surface,
which would be much more complex to implement correctly.

4.3.4. The projection matrices

The problem of constructing the projection matrices, that is, to which projection pixels and with
which weights each voxel in a given cubic grid in general orientation contributes, is analogous
to the problem solved by the Gilat-Raubenheimer method. To be speciVc, G(ω) in Sect. A.2
speciVes the fraction of a cube oriented along the coordinate axes that is on one side of a given
plane in arbitrary orientation, or equivalently the fraction of a cube in arbitrary orientation that
is below a plane normal to a coordinate axis. In other words, it is the exact analytical solution
for the problem of discrete plane projections (or rather slice projections) of a three-dimensional
density described as a function that is piece-wise constant on cubic voxels. It is evident that the
exact analytical solution for the discrete line-projection problem is much harder, as both the
number of cases to be considered is much larger and the distinct expressions are functions of
two variables. Therefore this problem is solved here only approximately.

It is more convenient to consider the projection plane Vxed and the cubic grid to be in some
arbitrary orientation, described by Euler angles. For an approximate solution Vrst a single cube
is subdivided into small cubes. Then the x and y coordinates of the centres of the small cubes are
two-dimensionally histogrammed (with comparable resolution). Actually, for high-symmetry
orientations of the cube it is advisable to apply dithering on a very small scale to avoid moiré
patterns, as it is possible that planes of the cube centre lattice end up directly at the histogram
bin boundaries in exact arithmetic. This histogram is then summed up over both dimensions
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to give an approximation to the cumulative distribution function of the projection of the cube.
Then, for each voxel and for each projection pixel that has an overlap with the projection of the
voxel the pixel corners relative to the projected voxel centre are mapped to coordinates into the
look-up matrix, the corresponding values are computed by linear interpolation, and the weight
by which the voxel contributes to the pixel is obtained by cross-wise subtraction of those values.
These operations are implemented as vectorized Octave code with only a single loop over the
distinct projections, but as a consequence the code is rather lengthy and will not be reproduced
here.

The approximation can be made arbitrarily accurate by a dense sampling without much
additional cost in computing time, additionally the projection matrices are afterwards convolved
with the resolution kernel anyway, so that the described algorithm can be considered as
numerically exact for practical purposes.

4.3.5. Solution of the linearized subproblem

Taking up the expression for the negative logarithm of the posterior probability (4.2.1), it can be
seen that approximating the Poissonian distribution by a Gaussian with a covariance matrix C
assumed as known leads for given γ and experimental parameters to a quadratic expression in ρ

f(ρ, γ) = 1
2
(Aγρ− b)>W(Aγρ− b) + α||D2ρ||2, (4.3.2)

where W is the inverse of the covariance matrix C and Aγ is the product matrix form of the
forward operator detailed in Sect. 4.3.2, depending on the Fermi surface coeXcients γ and the
experimental parameters. As discussed in Sect. 3.3.2, the maximum a posteriori estimate of ρ is
then

ρ∗γ = (A>γWAγ + αD>2D2 )\(A>γWb). (4.3.3)

For Poissonian statistics C is diagonal and can be approximated by its maximum-likelihood
estimate given the data, which is just the measured number of events per pixel b (or for better
statistics a locally averaged version thereof, assuming smooth variations of the projections
underneath the noise), where special care has to be taken for pixels with a low number of events,
in which case the maximum-likelihood estimate gives too small values that would bias the
reconstruction (see the discussion in Sect. 3.1.1). A consistent alternative choice would be the
posterior mean under the assumption of a Wat prior, which gives an estimate for the variance of
b+ 1 for b counts. For a rigorous solution of (4.2.1) see Sect. 4.3.7 below.

The computational complexity for solving this problem lies mainly in the computation of
the product A>γWAγ: For varying the Fermi surface Γ while keeping the other experimental
parameters Vxed, the determination of the voxel occupations is comparatively easy (about 0.2
CPU-seconds on a contemporary PC), while all other matrices in Sect. 4.3.2 can be precomputed.
The part of Aγ that corresponds to the Vlled bands can also be precomputed, and the sparse
matrix products leading to the other part take about 2 CPU-seconds. For the computation
of A>γWAγ it is actually more eXcient to deVne B =

√
WAγ and compute B>B, so that

the symmetry of the result is explicit to the algorithm. Still, even when computing only the
γ-dependent blocks and exploiting the symmetry, this is the numerically most costly step.
A discussion of an eXcient implementation in C is given in Sect. A.3, which computes the
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product on four processor threads in about 3 seconds. The Vnal solution of the linear system of
equations takes then only about half a second, so that the maximum a priori estimate for ρ and
consequently the optimal Vt to the data for a given γ can be computed in about 7 seconds.

4.3.6. Sampling the Fermi surface

The unknowns in the present formulation of the ACPAR reconstruction problem are the band
density coeXcients ρ and the Fermi surface coeXcients γ. The diUerent nature of these two
vectors of unknowns suggests a two-step approach: For given γ, the ρ most compatible with the
data are given by (4.3.3). The form of the conditional probability density of ρ given by (4.3.2)
is a multivariate Gaussian, therefore it follows that the probability density for γ marginalized
over ρ is proportional to the joint probability evaluated at ρ∗γ multiplied by the determinant of
the covariance matrix of ρ given γ, and its negative logarithm is given by

f(γ) = f(ρ∗γ, γ) + log
(
det(A>γWAγ+ αD>2D2)

)
(4.3.4)

up to an immaterial constant. It is not obvious whether this expression can be considered in
good approximation as quadratic, actually if ρ was Vxed and resolution was perfect, above
expression would not be guaranteed to be anything more than continuous in γ, although the
freedom in ρ will smooth this dependence.

For sampling the posterior distribution of γ deVned as above in a model-free way, the
Metropolis-Hastings algorithm is used (see Sect. 3.1.5). The resulting sample of the Fermi
surface coeXcients is then used to compute samples of some dimensions of the Fermi surface by
solving (4.3.1) for the Fermi energy in distinct directions of ~q. The expected values and standard
deviations of these samples constitute the Vnal result of the experiment.

4.3.7. Further sophistications

There are a variety of conceivable aspects how the basic model given above can be improved.
Here I will discuss some of those, their inWuence on the behaviour and results of the algorithm
will be given in Sect. 5.3.

The Vrst point concerns the choice of the localized basis functions used to describe the density.
As described in Sect. 4.3.2, in the basic formulation these are piecewise tri-linear, corresponding
to simple linear interpolation. As the actual densities to be reconstructed are smooth, such
a choice seems suboptimal. Smoother basis function can easily be obtained with the present
implementation by performing the linear interpolation successively: for the present case of
Ne/Nb = 4, writing the (Ne/2)3-by-(Nb/2)3 linear interpolation matrix as the product of a
(Ne/2)3-by-(Ne/4)3 and a (Ne/4)3-by-(Ne/8)3 matrix corresponds to piecewise tri-quadratic
basis functions.

The next point to consider lies in the approximation of the Poisson distribution by a Gaussian
distribution. Using the actual expression for the likelihood of observing the given data b when
in the mean Aγρ are expected in the expression (4.3.2) would also obviate the problem that the
covariance matrix C is unknown. The necessary analysis corresponds to a Taylor expansion of
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the logarithm of the Poissonian likelihood g(ρ) = log
(
P (b|Aγρ)

)
in (4.2.1)

∇g(ρ− ρ0) = A>γ
( y

Aγρ0

− 1
)
−A>γW(ρ0)Aγ(ρ− ρ0) +O

(
(ρ− ρ0)2

)
(4.3.5)

with W(ρ) = y/(Aγρ)2, where the divisions and squares are understood as entrywise. This
expression can be applied to Vnd the zero of the gradient iteratively. With this non-Gaussian
formulation, the marginal posterior distribution for γ is not any more proportional to the
likelihood of the maximum a posteriori estimate times the determinant, so this aspect has to be
checked also.

Lastly, it could be beneVcial to regularize not the Laplacian of the densities, but of the
logarithm of the densities. While above formulation corresponds to the prior information that
the absolute curvature of the densities should be small, regularizing the logarithm would mean
that the relative curvatures are small, which is physically more plausible. It would have the
additional beneVt that the reconstructed densities are strictly positive, a property which is not
guaranteed by above formulation. Again, this would necessitate to solve for the zero of the
gradient iteratively.
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Here I will apply the Fermi surface reconstruction algorithm as proposed in Sect. 4.3 to simulated
realistic data. To be speciVc, I will Vrst present the method used to compute the model and the
resulting densities and projections. Then I will discuss general observations with respect to the
reconstruction and test the eUects of modifying certain aspects of the reconstruction algorithm.
Further I will evaluate the proposed reconstruction model in terms of the expected accuracy
of the Fermi surface dimensions obtained from experimental data, due to both statistical and
systematic eUects. Unfortunately, such an evaluation seems to be lacking for the previous
approaches in Fermi surface reconstruction. Finally, I will discuss the implications for the
experiment, i.e. how for a given measuring time the optimal accuracy in the reconstructed Fermi
surface can be reached.

5.1. Simulated data

The electronic structure of copper was computed by the free software package abinit version
6.12.3 (Gonze et al., 2009). This is a Kohn-Sham density functional theory code (see Sect. 2.4.4)
that describes the valence single-particle wave functions in the Fourier domain, and the eUect
of the ionic cores in the projector-augmented wave formulation (Torrent et al., 2008). For the
exchange-correlation functional a generalized gradient approximation (Perdew, Burke, and
Ernzerhof, 1996) was used, and the self-consistent calculations were converged with respect to
the density of points in the Brillouin zone and the considered Fourier components. The 1s, 2s
and 2p states were treated as core states. The principal point here, however, lies not in a claim
to quantitatively reproduce the physical properties of copper, but rather to give qualitatively
plausible model data on which to evaluate the performance of the Fermi surface reconstruction
algorithm.

The calculation of ACPAR spectra is no native feature of abinit, but it was not hard to
implement: In order to compute the lifetime of positrons in matter, abinit can self-consistently
compute also positron states for a given electronic density, and the plane-wave nature of
the description of electron and positron states is very amenable to further treatments. To be
speciVc, with the electron density obtained from the self-consistent calculation the positron
wave function in the lowest band at the Γ point (i.e. with a Bloch wave vector equal to zero)
was computed in the limit of vanishing positron concentration (as is appropriate for delocalized
positrons, in contrast to the case of a defect). Additionally the electron wave functions and
energies were computed non-self-consistently for a dense grid within the Brillouin zone, and
the Fourier components of the electron-positron wave function were derived as given in (2.4.14),
i.e. in the independent particle model. Then these densities together with the band energies
were linearly interpolated from 963 to the Vnal 1443 grid, the occupations were computed from
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Figure 5.1.: Cuts through the simulated two-photon momentum density on a (100)-plane (left)
and a (110)-plane (right) through the origin, with the boundaries of the Vrst Brillouin
zone superimposed.

the energies by the Gilat-Raubenheimer method, and the densities were summed over the bands,
weighted by the occupations. Two cuts through the resulting three-dimensional two-photon
momentum densities are given in Fig. 5.1. The sharp edges due to the Fermi surface are evident
inside the Vrst Brillouin zone together with some aspects of the Fermi surface in higher Brillouin
zones (compare the Fermi surface rendering in Fig. 5.4). Away from the Fermi surface, the
variation of the density is smooth, with the highest variation in the Fermi surface necks that
cross the Brillouin zone boundary in the (110)-cut.

As described in Sect. 4.3, these three-dimensional densities were then projected along a
given direction, convolved with the instrumental resolution (here assumed as a Gaussian with
a realistic standard deviation of two pixel horizontally and one pixel vertically) and used to
simulate realizations of the Poissonian process for the respective pixels. Except where noted
otherwise, for the reconstruction projections along (100), (110) and (111) were used, each with
the realistic value of 3.3× 107 counts. Two of these simulated noisy projections are displayed
in Fig. 5.2.

For a rendering of the calculated Fermi surface see Fig. 5.4. It shows the distinct features of
the Fermi surface of copper (along with those of the other noble metals), which are the bulges
along the (100)-directions (towards the square parts of the Brillouin zone boundary) and the
necks in (111)-direction, where the Fermi surface crosses the Brillouin zone boundary (to be
periodically repeated in the neighbouring Brillouin zones).

For the further quantitative discussion it is convenient to deVne the length-scale via the
radius of the free-electron Fermi sphere (that is the sphere that encloses the correct reciprocal
space volume, in this case half the Brillouin zone) rf = 3

√
3/16π in reciprocal lattice units

(i.e. the distance between opposing squares of the Brillouin zone boundary). The variation of
the conduction band energy over reciprocal space is notably smooth, which is reWected in the
fact that the Fermi surface can be satisfactorily described with only three non-trivial Fourier
coeXcients (the root-mean-square deviation of the so-parametrized Fermi surface from the
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Figure 5.2.: Projections of the two-photon momentum density along (100) (left) and (110) (right).
Orientations and scale are equal to Fig. 5.1. The assumed resolution kernel is given
in the corner of the left panel. The pseudo-colour range is [0, 15000], corresponding
to 3.3× 107 counts per projection.

simulated one is less than 0.001 rf). From this it can be concluded that at least for the conduction
band around the Fermi energy a tight-binding description captures the essential physics.

The computed occupations correspond to Fermi surface radii along (100) of 1.063 rf, along
(110) of 0.946 rf, and a neck radius of 0.203 rf. These values agree surprisingly well with those
of Roaf (1962) obtained by Vtting de Haas-van Alphen data. In contrast, the agreement of
the Fourier coeXcients is much worse, as already with three parameters the variations of the
Fermi surface with respect to the parameters are nearly linearly dependent. Experimentally,
independent information obtained from measurements of the anomalous skin eUect (Pippard,
1957) has been used to further constrain the parameters.

5.2. General remarks on the reconstructions

Apart from the missing noise, the projections calculated from the sampled Fermi surfaces and
corresponding maximum a posteriori density estimates are visually indistinguishable from the
data and hence are not given here. In contrast, the reconstructed densities (Fig. 5.3) are obviously
diUerent from their source (Fig. 5.1): where in the original densities the part within the Fermi
surface in the Vrst Brillouin zone is nearly Wat and starts to decay only when passing through
the necks, in the reconstructions there is a depression in the zone centre and also around the
Fermi surface of about 5%. Additionally, the (100)-cut shows a faint cross in the outer regions,
which is reminiscent of the classical pictures of the edges along the projection lines when doing
a Vltered back-projection reconstruction with too large angular step (e.g. Feeman, 2010). It
seems therefore plausible that this artefact is due to a too low number of projections. Perhaps
also a more sophisticated regularization functional that promotes isotropic densities in the outer
regions, which actually conforms to the physical expectation, could ameliorate the situation, but
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5. Results

Figure 5.3.: Cuts through the reconstructed two-photon momentum density, same orientations
as Fig. 5.1.

I want to stress here that the presented reconstruction at only three projections already shows
the superiority of the used formulation compared to classical tomographical reconstruction
methods. Apart from these diUerences in the densities, the primary goal of the reconstruction,
that is the Fermi surface, is visually perfectly reproduced.

This assessment is also reWected in a quantitative determination of the Fermi surface dimen-
sions, which evaluate as 1.064(5) rf, 0.949(1) rf and 0.184(5) rf, corresponding to the radius
along (100) and (110) and the neck radius, respectively. The values in parentheses are the
standard deviation in the last signiVcant digit over the reconstructions from diUerent realiza-
tions of the Poisson noise. A comparison with the original values shows that the agreement is
quantitatively very good, although signiVcant diUerences remain, where the relative error is
most prominent in the neck radius.

As mentioned already above, however, the Vrst three free Fermi surface parameters are
nearly linearly dependent, therefore they are not well deVned and the covariance matrix of
the generated samples has a single large eigenvalue1. There are two possibilities for treating
such a situation: On the one hand it follows from physics that the envelope of the Fourier
components will decay quite fast towards higher indices. Therefore it would be justiVed to
add a regularization on the values of the Fourier components, which would concentrate the
distribution in the region of the original ellipsoid nearest to the origin. A diUerent way would be
to consider more free Fourier components, calculate the derivatives of the Fermi surface shape
with respect to these components, and choose the modes corresponding to the highest singular
values. This approach could be expected to make the sampling of the distribution most eXcient,
but is not grounded in physics. For keeping the model as simple as possible, here neither of these
possibilities was followed, instead the results are reported in terms of the principal dimensions
of the Fermi surface, which are well deVned as discussed above.

1By the way, at this statistical level of the data, the posterior probability density of γ is constrained to such a
small region in parameter space that its logarithm is in a good approximation quadratic in this region, so the
question raised in Sect. 4.3.6 can be answered in the aXrmative.
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5.3. InWuence of model aspects

Here I will report the eUects of varying details of the model as proposed in Sect. 4.3.7.
The localized basis functions used above were obtained by repeated linear interpolation,

corresponding to piecewise tri-quadratic functions. In fact, when using tri-linear basis functions,
this lesser degree of smoothness would be visually recognizable in the reconstructed densities.
This can also be quantiVed: Using a regularization parameter α that gives a χ2 of about 62300
depending on the realization of the Poisson random variables (where the target value as per
Morozov’s principle would be 3N2

p = 62208) in the Gaussian approximation with the quadratic
basis functions yields a χ2 of about 63700 with the linear basis functions. This shows that
the quadratic basis functions can describe the data better and are therefore to be preferred,
additional to the fact that they agree better with the physical expectation. The eUects on the
reconstructed Fermi surface parameters are not drastic, however: With the linear basis functions,
the neck radius would be even smaller, but the (100)-radius would be larger, in both cases by
about 0.002 rf.

The next point concerns the diUerence in computing the marginalized posterior probability
density for γ by either modelling the conditional density of ρ as a Gaussian as in (4.3.4), or
taking directly the conditional probability of the maximum a posteriori estimate for ρ. With
the parameters chosen as described above, the logarithm of the determinant scatters only by a
value of about one for the sampled γ, and the eUect on the computed Fermi surface dimensions
is below 0.002 rf, which is hard to determine signiVcantly. As a consequence, in the present
situation it is justiVed to neglect the corresponding term in (4.3.4). The reason for this is that the
data constrain the variation of the Fermi surface to a very small region, where the width of the
conditional probability density for ρ cannot vary much. In other cases, this could be diUerent.

The diUerence between using the Gaussian approximation to the Poisson distribution of the
counts and using the correct expression is equally small. Again, this is due to the fact that the
count numbers per pixel are not too small, so that the approximation is justiVed. Considering
this aspect is numerically not hard, however; as the maximum a posteriori densities do not vary
much, a single iteration of (4.3.5) for each new γ (taking the estimate at the old γ as starting
point) suXces to arrive at the solution.

The last point concerns the possibility of regularizing the logarithm of the densities. This was
also tried by solving for the zero of the gradient in the Taylor approximation iteratively, but it
proved to be harder than in the case of the correct expression for the Poisson probability. This
can be either due to the fact that in contrast to above, here there is no approximation to be used
as a starting point, or that the problem is much more non-linear.

5.4. EUect of experimental uncertainties

In the actual experimental setting, the forward operator, which maps the densities and the Fermi
surface to the projections, depends on additional parameters that are only approximately known.
The two most grave uncertainties are expected to be the actual orientation of the sample and the
instrumental resolution. The natural way to account for these uncertainties is to model them
also in a Bayesian framework by enlarging the set of unknowns and adding respective priors.
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Here I will explore the consequences of the above-mentioned principal eUects.
The posterior probability is very sensitive to the resolution kernel used in the reconstruc-

tion. Using for the reconstruction a kernel that is a few percent larger than the kernel used
for simulating the projections results in a much lower posterior probability. Therefore the
reconstructed results are robust with respect to such an uncertainty, as such larger kernels
are identiVed as being very unlikely. On the other hand, the probability increases for smaller
kernels up to a minimum at a kernel width of 88% of the correct one. That the data can be
better reconstructed by an incorrect forward operator is at Vrst sight surprising, but it can be
understood by considering the eUect of regularization: for describing a given variation in the
projections with a smaller resolution kernel, the densities themselves can be smoother than
they would have to be with a wider kernel, which is rewarded by the regularization. For even
smaller kernels, the posterior probability drops again, because the Fermi surface eUects in the
projections would become too sharp.

However, this preference of the model for too small resolution kernels is not critical, because
on the one hand, for the interpretation of an experiment the eUect can be determined from
simulations and added to the prior information, while on the other hand, the simulations with
the above-mentioned 88%-wide kernel yield Fermi surface dimensions of 1.061(4) rf, 0.949(1) rf

and 0.186(3) rf, which is indistinguishable from the results with the actual kernel.
For misalignment, the situation is comparable. Experimentally, one is conVdent that the

misalignment is bounded better than within 1◦ in each Euler angle. The simulations show that
misalignments in the angle that rotates the projection around the projection line are easy to
spot, half a degree would already lead to a much unlikelier reconstruction, presumably because
this would rotate the mirror symmetries in the projections, which however are quite well
deVned. Misalignments in the other two angles do not aUect the posterior probability of the
reconstruction much, but again, the Fermi surface dimensions reconstructed with a generous
choice of 1◦ misalignment are 1.062(8) rf, 0.950(2) rf and 0.183(4) rf, showing no signiVcant
deviation.

5.5. Implications for the experiment

As the last point, I want to consider the eUect of the measurement parameters that are free
for the ACPAR experimenter to choose. In contrast to the case of medical imaging, where
both geometrical constraints and the used reconstruction method deVne how the measurement
has to proceed, here the number of projections, the projection directions and the respective
statistical weight can be chosen freely. In ACPAR, the limiting factor is the count rate (the
parameters considered here correspond to overall measurement times of a few days), so the
relevant question is how to allocate a certain integral measurement time most economically.

First the question of the eUect of the statistical accuracy has to be settled. Here the surprising
conclusion has to be drawn that the resulting Fermi surface dimensions are largely unaUected
by the integral number of counts in the projections: with a Vve-fold increase they evalu-
ate as 1.066(5) rf, 0.950(2) rf and 0.186(6) rf, and with a Vve-fold decrease as 1.063(11) rf,
0.948(2) rf and 0.186(7) rf. This stability is due to regularization; it shows that the present
reconstructions describe all the information content in above-mentioned three projections even
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Figure 5.4.: Rendering of portion of Fermi surface within Vrst Brillouin zone, actual ab-initio
simulation (left) and representative reconstruction with four projections and 108

counts (right).

in the absence of noise.
A better reconstruction should be obtained by distributing the counts over a larger number of

independent projections. This can be understood by considering (4.3.3): The system of equations
is (essentially) underdetermined, therefore A>γWAγ has eigenvalues equal to zero. The eUect of
regularization is to raise these eigenvalues away from zero so that the solution becomes stable,
at the price that the corresponding components of the solution are not determined by the data,
but by the regularization. Actually, A>γWAγ is a sum over symmetric positive semi-deVnite
matrices corresponding to the diUerent projections. By adding an additional independent
projection the relative spread of the eigenvalues will therefore decrease, and less aspects of the
solution will have to be provided by the regularization.

It is conceivable that it would require a much larger number of projections to observe a
signiVcant improvement of the reconstructed Fermi surface dimensions. A trial with a fourth
projection direction at the same overall number of counts resulted in 1.068(8) rf, 0.949(2) rf

and 0.187(3) rf, which is not much diUerent from the previous values, although it comes nearer
to the actual value for the (111)-neck, which is consistently reconstructed too small, than all
quoted values above. Also, the corresponding densities do not show the back-projection artefact
discussed in Sect. 5.2 any more.

5.6. Conclusions

Fermi surface determination by ACPAR has always been a rather qualitative method, due to the
limitations in the methodological approaches to data interpretation. In this thesis I have proposed
a method based on established concepts in applied mathematics with the explicit aim to allow for
determining quantitative results on the Fermi surface dimensions. The application to simulated
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data shows that this goal has largely been reached: assuming realistic values for the resolution
and statistical accuracy of the projections gives a reconstruction with systematic errors of about
one percent of the free electron Fermi momentum, and statistical errors even lower. As has been
shown, these reconstructions are stable with respect to errors in the experimental assumptions
such as misalignments and inaccuracies in the instrumental resolution. For an actual application
to experimental data, the systematic errors can even be reduced by determining an estimate for
them from simulations such as was done here, and correcting the experimental dimensions for
these errors.

Lastly, the resulting images are perhaps the best demonstration of the quality of the attained
reconstruction: Figure 5.4 shows renderings of both the simulated Fermi surface and a represen-
tative reconstruction. The visual agreement is unambiguous, only by knowing where to look
one can perhaps discern that the reconstructed neck radius is too small.
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A.1. Diverse small Octave functions

Here I give selected eXcient Octave implementations of functionalities described in 4.3.

function Aro=mat_Aro(Ne)

#Propagation from irreducible cubic wedge to octant

[x,y,z]=ndgrid(.5:Ne/2);

[s,i]=sortrows(sort([x(:) y(:) z(:)],2));

Aro=sparse([1 cumsum(diff((s-.5)*[Ne^2/4 Ne/2 1]’)!=0)’+1],i,1);

function Ainterpl=mat_lin_blowup(N1,N2)

#linearly interpolates grid of N1^3 to N2^3

[x,y,z]=ndgrid((.5:N2)/N2*N1);

xyz=[x(:) y(:) z(:)];

oxyz=round(xyz);

uxyz=max(0,oxyz-1);

weight=xyz-oxyz+.5;

oxyz=min(oxyz,N1-1);

xo=oxyz(:,1);yo=oxyz(:,2)*N1;zo=oxyz(:,3)*N1^2;

xu=uxyz(:,1);yu=uxyz(:,2)*N1;zu=uxyz(:,3)*N1^2;

weight=[(1-weight(:,1)).*(1-weight(:,2)).*(1-weight(:,3));

weight(:,1).*(1-weight(:,2)).*(1-weight(:,3));

(1-weight(:,1)).*weight(:,2).*(1-weight(:,3));

weight(:,1).*weight(:,2).*(1-weight(:,3));

(1-weight(:,1)).*(1-weight(:,2)).*weight(:,3);

weight(:,1).*(1-weight(:,2)).*weight(:,3);

(1-weight(:,1)).*weight(:,2).*weight(:,3);

weight(:,1).*weight(:,2).*weight(:,3)];

Ainterpl=sparse(1+[xu+yu+zu;xo+yu+zu;xu+yo+zu;xo+yo+zu;xu+yu+zo;xo+yu+zo;xu+yo+zo;xo+yo+zo],

(1:N2^3)’(:,ones(1,8))(:),weight);

function Aof=mat_Aof(Ne)

#Propagation from cubic octant to full space

[x,y,z]=ndgrid(-Ne/2+.5:Ne/2);

xyz=[x(:) y(:) z(:)];

Aof=sparse((abs(xyz)-.5)*[Ne^2/4 Ne/2 1]’+1,1:Ne^3,1);

function Afinres=mat_finres(Np,sigma1,sigma2)

#Convolution with resolution kernel

[x,y]=ndgrid(floor(-3*sigma1):ceil(3*sigma1),floor(-3*sigma2):ceil(3*sigma2));

kern=exp(-((x/sigma1).^2+(y/sigma2).^2)/2);kern/=sum(kern(:));

N=prod(size(kern));

[i,j]=ndgrid(0:Np-1);
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ind=mod(i(:)(:,ones(N,1))+x(:)’(ones(Np^2,1),:),Np)+...

mod(j(:)(:,ones(N,1))+y(:)’(ones(Np^2,1),:),Np)*Np+1;

Afinres=sparse(i(:)(:,ones(N,1))+j(:)(:,ones(N,1))*Np+1,ind,kern(:)’(ones(Np^2,1),:),Np^2,Np^2);

function D=mat_D(Ne)

#Laplacian regularization operator on octant

D=sparse(Ne^3/8,Ne^3/8);

index=((1:(Ne/2-1))’*ones(1,(Ne/2)^2)+ones(Ne/2-1,1)*(0:((Ne/2)^2-1))*Ne/2)(:);

D+=sparse(index,index,1,Ne^3/8,Ne^3/8)-sparse(index,index+1,1,Ne^3/8,Ne^3/8);

D+=sparse(index+1,index+1,1,Ne^3/8,Ne^3/8)-sparse(index+1,index,1,Ne^3/8,Ne^3/8);

index=((1:((Ne/2)^2-Ne/2))’*ones(1,Ne/2)+ones((Ne/2)^2-Ne/2,1)*(0:(Ne/2-1))*(Ne/2)^2)(:);

D+=sparse(index,index,1,Ne^3/8,Ne^3/8)-sparse(index,index+Ne/2,1,Ne^3/8,Ne^3/8);

D+=sparse(index+Ne/2,index+Ne/2,1,Ne^3/8,Ne^3/8)-sparse(index+Ne/2,index,1,Ne^3/8,Ne^3/8);

index=(1:((Ne/2)^3-(Ne/2)^2));

D+=sparse(index,index,1,Ne^3/8,Ne^3/8)-sparse(index,index+(Ne/2)^2,1,Ne^3/8,Ne^3/8);

D+=sparse(index+(Ne/2)^2,index+(Ne/2)^2,1,Ne^3/8,Ne^3/8)-...

sparse(index+(Ne/2)^2,index,1,Ne^3/8,Ne^3/8);

A.2. The Gilat-Raubenheimer method

The problem of computing a density of states is relevant for many Velds of solid-state physics.
The density of states is deVned via

d(ω) =

∫
B

d~x δ
(
f(~x)− ω

)
, (A.2.1)

whereB is the Brillouin zone (or any other domain, depending on the problem). Mathematically,
an equivalent problem is to compute the probability density of a scalar-valued random variable
that is an arbitrary function of a vector-valued random variable with known probability density.

Gilat and Raubenheimer (1966) gave an eXcient numerical algorithm for this problem when
f and its gradient can be computed for any given point. It consists in splitting the integration
domain B into cubes (special care has to be devoted to the case where this is not possible due to
the shape of B), for each cube approximating f by its linearization at the cube’s centre, and
computing the integral explicitly. Geometrically, the problem thus corresponds to determining
the area of the intersection of a plane with a cube.

Consider now a cube centred at the origin with an edge length of 2 and a linear function
f(~x) = x1l1 + x2l2 + x3l3. Due to the symmetry of the cubic integration domain, its density of
states is invariant with respect to a permutation of the coordinates or a change in sign, therefore
we can assume l1 ≥ l2 ≥ l3 ≥ 0. DeVne

ω4 = l1 + l2 + l3

ω3 = l1 + l2 − l3
ω2 = l1 − l2 + l3

ω1 = −l1 + l2 + l3

(A.2.2)

and, for notational convenience

k = (ω2
4 − ω3

3 − ω2
2 − ω2

1)/2. (A.2.3)
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Figure A.1.: Intersections of the iso-planes of f with the cube for the three cases i = 0 . . . 3
(from bottom to top plane) and the two qualitatively diUerent geometries a (left)
and b (right).

Above-deVned ±ωi correspond to the values of f on the cube corners. Between those points
(A.2.1) evaluates to a polynomial in ω. Note that apart from ω1, all ωi are positive. The sign of
ω1 qualiVes the linear function f into two generic cases a (with ω1 > 0) and b (ω1 < 0). The
geometry of the iso-plane corresponding to a given ω is deVned by the cases i : |ωi| ≤ ω ≤ |ωi+1|
for i = 0 . . . 4, with ω0 = 0 and ω5 =∞. For an illustration see Fig. A.1.

It then follows that the density of states over the cube for this linear function is given by

d(ω) =
1

l1l2l3
g(|ω|) (A.2.4)

and its integral ∫ ω

−∞
dνd(ν) = 4 +

sgnω

l1l2l3
G(|ω|) (A.2.5)

with g and G as deVned below. Expressions for the degenerate cases where one or more of the
li are equal to zero can easily be obtained from these general expressions by cancelling.

Case g(ω) G(ω)
0a k − ω2 kω − ω3/3
0b 4l2l3 4l2l3ω
1 1

2
k + 2l2l3 − ω1ω − 1

2
ω2 −1

6
ω3

1 + (1
2
k + 2l2l3)ω − 1

2
ω1ω

2 − 1
6
ω3

2 2l3(l1 + l2 − ω) 4l3(l1l2 − 1
3
l23)− 2l23(ω − ω4)− l3(ω − ω4)2

3 1
2
(ω − ω4)2 4l1l2l3 + 1

6
(ω − ω4)3

4 0 4l1l2l3

The expressions for g(ω) have been derived by Gilat and Raubenheimer (1966). In this thesis
the algorithm was used for determining the proportion that is within the Fermi surface for a
given voxel. The solution to this problem for a given deviation of the energy at the cube centre
from the Fermi energy and a given energy gradient follows immediately from the expressions
for G(ω). The derivative of these occupations with respect to the energy is obviously just g(ω).
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A.3. Sparse-to-full matrix multiplication

DiUerent from full matrices that are stored element for element, for sparse matrices only the
positions and values of non-zero elements are stored. This can be very useful when the scale
of the problem (number of equations and unknowns) is large, but each equation couples only
a small number of unknowns. Apart from storage, arithmetic operations on sparse matrices
can also be performed much faster when only the non-zero elements have to be explicitly
treated. If the density of a sparse matrix (i.e. the ratio of non-zero elements to the product of the
dimensions) becomes high, however, the eXciency becomes inferior compared to a treatment
in terms of full matrices, both in terms of storage (as with sparse matrices for each element
also the position has to be recorded), but even more so in terms of run-time for arithmetic
operations such as multiplications, as the consecutive order of full matrices allows for much
more streamlined data handling (and actually fast matrix multiplication algorithms exist that
improve on the time complexity bounds of the naive algorithm).

In 4.3.5, the product of moderately sparse matrices is singled out as the bottleneck of the
implementation. To be speciVc, two matrices with dimensions of about 1000 by 60000 and a
density of about 0.25 are to be multiplied along the large dimension, so that the result is a square
matrix of 1000 by 1000. It is clear that the product matrix will be full, as the number of scalar
products to be calculated is much larger than the product matrices’ number of elements. A
general-purpose sparse matrix multiplication algorithm will therefore be very ineXcient, as
it has to generate a well-formed sparse matrix result (which implies explicit bookkeeping on
the results of the scalar multiplications, sorting them and eventually adding them together).
Converting to full matrices before multiplication would be an alternative, but this needs about
16 times more scalar multiplications (if performed by naive full matrix multiplication) than
sparse matrix multiplication (not counting the more involved calculation of memory addresses
with sparse matrix multiplication). It therefore seemed that a coherent implementation of a
function that takes sparse matrices as input and gives a full matrix as output could outperform
either alternative.

The resulting code is available at http://homepage.univie.ac.at/michael.leitner/sparse.zip and
oUered under the GNU General Public License, version 2. It consists of a function for calculating
the product of two sparse matrices A and B so that AB> = C, where C is a full matrix
(the transpose allows for a simpler and more eXcient implementation when both matrices
are given in compressed column storage), and basically the same function for the special case
B = A, which is about a factor of two faster by using the symmetry of the product matrix. Both
functions are written in C99 for the eXciency of native code created by C compilers and the
possibility to link to C libraries from nearly any language. For the case at hand, these functions
are called by wrapper functions written in C++ that can be natively compiled to Octave’s
so-called oct-Vles.

The algorithm works by successively computing blocks of the resulting full matrix on the
order of the L2 cache size, so that neither reading from nor writing to main memory constitute
communication bottlenecks. This can be demonstrated by a simple estimation with the numbers
quoted above: Take a block size of 250 by 250 elements. With 8 byte doubles this corresponds to
about 490 kB, which Vts comfortably into the 512 kB L2 cache. Then the algorithm iterates over
the columns of the sparse input matrices. If they have random structure at a density of 0.25,
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A.3. Sparse-to-full matrix multiplication

then for both matrices in each column about 60 non-zero elements will contribute to this block,
corresponding to about 1.5 kB of data (8 byte doubles for the value and 4 byte integers for the
address per element), which Vts conveniently into the L1 cache. Each pair of these elements is
then multiplied together and added at the corresponding position in the block, corresponding
to 3600 times doing one double multiplication and addition, some integer multiplications and
additions for the address, and a store to the L2 cache. Fetching the 1.5 kB into L1 cache from
main memory will take much less time, and only after all 60000 columns the block has to be
stored into the resulting matrix in main memory. This demonstrates that this is probably the
most eXcient implementation possible for naive sparse matrix multiplication for such densities.
Only for extremely sparse matrices, where also the resulting matrix is rather sparse, it would be
more eXcient to store the scalar multiplication results as a list, and afterwards sort them and
merge colliding entries.

Another beneVt of the blocked assembly of the resulting matrix is that the algorithm can be
parallelized over the blocks without eUort. This was done in the framework of Posix threads
with four worker threads, matched to the number of processor threads. The resulting functions
are inferior to Octave’s stock sparse matrix multiplication at very low densities, both approaches
have equal run-time at a density of 0.0012 in the input matrices (giving a density of 0.08 in
the resulting matrix), while for an input matrix density of 0.03 the custom implementation is
already ten times faster, after which the discrepancy grows only slowly until a factor of 15 at the
target density of 0.25. By the way, converting the input matrices to full and using Octave’s full
matrix multiplication operator (which uses some blas implementation that runs on two threads,
diUerent from the rest of Octave) performs equally compared to the custom implementation at
an input density of 0.7, while it is on a par with the stock sparse matrix multiplication already
at an input density of 0.09.

The comparison above has been done on sparse matrices with random structure. However,
sparse matrices that originate from a model will have structure and so will their product, which
will aUect the relative merits somewhat.
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