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Abstract

This work deals with atomic diffusion in solids and the investigation thereof by scat-
tering methods, specifically using X-ray photon correlation spectroscopy (XPCS). Con-
trary to conventional methods, such as investigating diffusion via the analysis of the
depth-dependent concentration of radioactive isotopes diffused into the sample during
annealing, XPCS is able to detect the single atomic jump from lattice site to lattice site.

Starting with a review of the concepts used for describing diffusion on a lattice it is
demonstrated how to interpret the results of an XPCS experiment by the pair correlation
function. To this end also the temporal evolution of the pair correlation function under
the influence of short-range order is derived.

Different aspects of atomic diffusion are simulated and discussed for selected exem-
plary systems. Results from experiments on these systems are presented and promising
directions of future research are proposed. As the technique of X-ray photon correlation
spectroscopy with atomic resolution was developed and for the first time successfully
performed in the frame of this work, a substantial point is dedicated to practical consid-
erations and calculations concerning the experiment, such as the optimal experimental
set-up, the evaluation of the data, and the expected statistical significance of the results.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der atomaren Diffusion in Festkörpern und ihrer
Untersuchung mittels Streumethoden, im konkreten Fall der Röntgenphotonenkorrelati-
onsspektroskopie (XPCS). Anders als konventionelle Methoden wie die Untersuchung
der Diffusion mittels tiefensensitiver Konzentrationsanalyse radioaktiver Isotope nach
Auslagerung der Probe kann XPCS den einzelnen Sprung des Atoms von Gitterplatz zu
Gitterplatz detektieren.

Ausgehend von einem Überblick über die Begriffe zur Beschreibung von Diffusion auf
einem Gitter wird dargelegt, wie die Ergebnisse eines XPCS-Experiments mit Hilfe der
Paarkorrelation interpretiert werden können. Dazu wird auch die zeitliche Entwicklung
der Paarkorrelation unter dem Einfluss von Nahordnung abgeleitet.

Anhand ausgewählter Systeme werden verschiedene Aspekte der atomaren Diffusion
simuliert und diskutiert. Die Resultate der Experimente an diesen Systemen werden
präsentiert und lohnende zukünftige Richtungen vorgeschlagen. Da im Rahmen die-
ser Arbeit die Technik der Röntgenphotonenkorrelationsspektroskopie mit atomarer
Auflösung entwickelt und erstmals durchgeführt wurde, ist ein wesentlicher Punkt auch
praktischen Überlegungen und Rechnungen gewidmet, wie dem optimalen Einstellen
der experimentellen Konfiguration, der Auswertung der Daten und der erwarteten
statistischen Signifikanz des Ergebnisses.
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ter Mann sinngemäß gern gesagt hat: ”Wenn die Allgemeinheit uns Wissenschaftern
schon unser Spielzeug finanziert, so ist es doch unsere Pflicht, etwas Sinnvolles damit
anzufangen.“ Im Bewusstsein, damit in einer privilegierten Position zu sein, habe ich
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Friedrich Gröstlinger hat uns mit seiner Arbeitskraft bei den Strahlzeiten unterstützt,
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1. Introduction

Solid matter is the very embodiment of permanence. In most aspects in every-day life
this permanence is also a deciding factor dominating the choice of used materials: you
want your can opener to cut the can without being affected, you want your bicycle to
still work after being left in the rain, your house to withstand a storm, and the tungsten
filament in your light bulb should survive temperatures of even thousands of degrees1.

This solidness on the macroscopic scale does not necessarily translate to the micro-
scopic scale, however. The atoms oscillate about the places where they are supposed to
be, and sometimes they even jump from one lattice site to the next. This perpetual motion
on the atomic scale is called dynamics. Especially diffusion, which is the smearing-out
of concentration gradients brought about by the stochastic jumps of the atoms, is a
phenomenon with far-reaching consequences. It is important from the first stages of the
lifespan of a product, for instance in surface hardening of tools, precipitation hardening
of aluminium elements, or the doping of semiconductors, to the last stages, being
responsible for corrosion or the disappearance of the doped layers due to interdiffusion.
Therefore it is necessary to know about diffusion for controlling the properties during
production or for preventing their deterioration.

The rates of the atomic jumping cover many magnitudes: in the golden wedding ring
you possibly have on your finger on the order of one atom jumps per second at ambient
temperatures, but in metals at elevated temperatures each atom can easily jump millions
of times per second. Still, because each jump happens on such short timescales, at any
given moment the vast majority of atoms does not jump, therefore the metal retains its
macroscopic “solid” properties.

This thesis deals with the random jumping of the atoms in a solid from one stable site
to the next. It will only treat the case of equilibrium dynamics, this means that there is
no change of macroscopic properties with time, changes occur only on the microscopic
level when the distinct atoms change place. Equivalently put, the probability for a
system to evolve from state A to state B is equal to the probability for evolving from B
to A. Therefore applying the term diffusion to this process of random hopping is a bit
misleading, because diffusion implies a spreading-out. In fact this random movement
leads to diffusion given a concentration gradient, but it is not synonymous to it. Methods
which treat interdiffusion via preparing a concentration gradient or treat tracer diffusion
via preparing an isotopic gradient and measuring the smearing-out of this gradient
during annealing therefore do not conform to this criterion. They directly measure
diffusion but can deduce information about the random atomic movement only in
an indirect way. This thesis deals in the description and direct measurement of the

1Hopefully for a long time before you are forced to replace it by a compact fluorescent lamp.
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underlying dynamics. Unfortunately the term diffusion has come to be applied also for
this random hopping without any spreading of gradients (as in “a particle diffuses on a
lattice”), and in this sense it will also be used throughout this thesis. I beg the reader to
keep this ambiguity in mind.

The main point of this thesis is to bring together two physical fields to solve known
problems by a new method: on the one hand there is X-ray photon correlation spec-
troscopy (XPCS), a scattering method capable of detecting the dynamics in the sample
via following the fluctuations in the scattered intensity. Until now, this method has been
applied to the study of the dynamics at scattering vectors ~q with only very small absolute
values, corresponding to comparatively large scales in real space (Brauer et al., 1995;
Dierker et al., 1995; Shpyrko et al., 2007). On the other hand there exists a community
(with strong contributions from my group, the group of Sepiol and Vogl in Vienna)
devoted to the study of atomic jumps, using mainly neutron scattering and to a smaller
part Mößbauer spectroscopy, see e.g. Vogl and Sepiol (2005) for a review. Combining the
existing concepts and knowledge with the non-resonant scattering method XPCS, where
we have already gathered experience (Stadler et al., 2003; Pfau et al., 2006), gives a very
promising new tool, able to overcome the problems inherent in the existing methods
(such as favourable elements or isotopes and high jump frequencies being necessary
for these methods), especially in view of the imminent becoming operational of new
and very powerful X-ray sources such as PETRA III and the European XFEL, both in
Hamburg, and the LCLS in Stanford.

The principle of X-ray photon correlation spectroscopy is very simple: as the scattered
intensity is the absolute square of the Fourier transform of the scatterer density in the
sample, having disorder in the sample will result in disorder (i.e. fluctuations) in the
diffuse scattering. If the atoms in the sample change their position, the scattered intensity
at a given point on the detector will fluctuate over time, and XPCS essentially just records
the time scale of this fluctuating as a function of the scattering vector ~q. The crucial point
for this argumentation to hold is the coherence of the incoming radiation, however. If
it is not coherent, one point on the detector corresponds to a distribution of scattering
vectors ~q, and incoherent addition of their intensities smears out the fluctuations. If the
incident radiation is coherent (that means a well-defined plane wave2), however, the
equating of scattering and Fourier transforming holds, and the scattered radiation shows
fluctuations, also called “speckles” (Sutton et al., 1991). Obtaining coherent radiation
is in principle not difficult, all one has to do is to take an incoherent source and cut
out a sufficiently small volume in phase space by using slits (for transversal coherence)
and monochromators (for longitudinal coherence). This is the way it is done nowadays
in X-ray physics, as a synchrotron is an incoherent source. With such an approach
one obviously trades intensity for coherence. This is a fundamental problem, because
increasing the detection efficiency does not work, XPCS is already at the single-photon
level. In the future inherently coherent X-ray sources, free-electron lasers in the hard

2Note that for the appearance of speckles only a fixed phase relation in space and time is necessary, but in
order to be able to use the Fourier transform I require plane waves, which will be fulfilled in a good
approximation within the small illuminated sample volume.
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X-ray regime, will become available, just as lasers are in the optical regime. This will
open up a vast range of possibilities for coherent X-ray physics, enabling the study of
processes inaccessible up to now.

What XPCS detects is the stochastic evolution of the disorder in the sample. Applied
to the case of atomic dynamics, it therefore detects chemical diffusion, that means the
process that governs how a given occupation of the lattice sites by atoms of different
kinds (or by atoms and holes) evolves to another occupation. This is a difference to
incoherent methods such as Mößbauer spectroscopy, which measure tracer diffusion,
i.e. they label the atoms (by radioactivity or by imprinting a phase onto the nuclei) and
measure how this labelled atom diffuses.

In the frame of this thesis the first successful applications of XPCS to the problem of
studying atomic diffusion were performed. Apart from documenting the results and
physical insights obtained from these experiments another important point for me was
to devote some space both to the fundamental theoretical aspects of atomic diffusion
and to considerations concerning the experimental side, such that it would ideally be
possible for any solid state physicist to start with this subject using this thesis alone,
without having to reinvent all the small details a second time.

This is the structure of the thesis: first the concepts for describing stochastic motion
on a lattice are introduced and results relevant to this thesis are derived, and these
theoretical concepts are linked to the case of atomic diffusion and to the results obtained
by an XPCS experiment. Then a number of systems exemplary for distinct aspects
of atomic diffusion is presented. In the next chapter the evaluation of the raw data
obtained with an XPCS experiment is described in some detail, followed by a chapter
about optimizing the experimental set-up. Then comes a chapter about the experimental
results obtained on the aforementioned systems so far, and finally an outlook is given.
Everything presented in this thesis is original, apart from Chapter 3 (which for the
most part can be found in textbooks) and the section on the self-correlation function
in Chapter 2. The derivation of the temporal evolution of the pair-correlation function
under the constraint of short-range order given in Section 2.3 is also original, it re-derives
the result already given by Sinha and Ross (1988) for the case of quasi-elastic neutron
scattering in a more easily understandable fashion.
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2. Theory

In this chapter I will give the fundamental concepts to describe diffusion on the atomic
level, with special consideration to the case of diffusion on a lattice. For reasons of
conceptual simplicity this chapter will stay abstract, I will work out the connection to
the actual problem at hand – atomic diffusion in condensed matter – in Chapter 3.

2.1. Setting the scene

The system to be described consists of particles diffusing in infinite space. The particles
behave equally but are distinguishable. The theoretical tools for the problem at hand,
i.e. to describe the stochastic motion of the particles, were given by van Hove (1954).
These are:

• The self-correlation function Gs(∆~x,∆t) gives the probability to find a given particle
at time t + ∆t at the position ~x + ∆~x given that it (the same particle) was at time t at
position ~x.

• The pair-correlation function G(∆~x,∆t) gives the probability to find any particle at
time t + ∆t at the position ~x + ∆x given that any particle was at time t at position ~x.

The definition given above is the classical case of van Hove’s quantum-mechanical
theory. This is justified by the fact that first for the systems of interest in this thesis the
spatial uncertainty of the particles is given by thermal excitations and not quantum
effects (e.g. tunneling) and second that the scattering of X-rays on diffusing atoms can
be considered truly elastic due to the X-rays’ high energy. The formulation with time
differences instead of the correlations between two absolute times implies that the system
is in equilibrium. Obviously the functions given above do not contain all the information
of the dynamic process. One could continue and consider correlation functions of higher
order, e.g. the probability of a particle being at a given time and place if it was at time t1
at place ~x1 and at time t2 at place ~x2, but for diffusion modelled as a Markov process the
description by two-point correlations suffices.

From now on I will restrict my attention to particles diffusing on a lattice. I assume
the lattice to be three-dimensional, as this covers all cases treated later in this thesis, but
this is just for convenience, the reader is invited to picture a lattice of arbitrary finite
dimensionality1, everything given here generalizes. Let the lattice be composed of Λ
sublattices. The translation vectors of the fundamental lattice be ~a1, ~a2, and ~a3, being
linearly independent, but not necessarily orthogonal. I use this basis set for spanningR3.

1Diffusion on a surface would be a physically relevant case of diffusion on a lower-dimensional lattice.
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The distinct sites in the sublattice have the coordinate vectors rλ for 1 ≤ λ ≤ Λ. Finally I
define the vectors spanning reciprocal space ~b1, ~b2, and ~b3 such that ~ai ·~b j = 2πδi, j. This
set of vectors can easily be constructed:

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)
, (2.1.1)

~b2 and ~b3 follow by cyclic permutation. Given a vector ~x relative to the Cartesian unity
vectors ~ei I will write x for its coordinate vector relative to the translation vectors of the
lattice ~ai, analogously with a reciprocal vector ~q and its coordinate vector q relative to the
reciprocal lattice vectors ~bi. This has the property that the valid positions of the particles
are given by x + rλ for x ∈ Z3 and 1 ≤ λ ≤ Λ. Also note that q · x = ~q · ~x due to the
definition of the reciprocal lattice vectors.

Having this definitions out of the way, I now move on to the description of the
dynamics, the correlation functions.

2.2. The self-correlation function

As stated above, van Hove’s self-correlation function Gs(∆x,∆t) gives the conditional
probability for a given particle to be at time t + ∆t at position x+ ∆x under the condition
that this particle was at time t at position x. The reason for treating the self-correlation
function is first that it is a rather intuitive way of describing dynamics and second that
there are methods which (more or less) directly measure it (see Section 3.4). These
methods realize the measurement of the probability via the actual displacements of a
vast number of atoms. I will now deduce the temporal evolution of this probability
density. For past approaches to this problem see Chudley and Elliott (1961); Krivoglaz
(1961); Rowe et al. (1971); Kutner and Sosnowska (1977); Randl et al. (1994).

I consider particles diffusing on a lattice. As its name already tells, for the self-
correlation function the movement of a particle with respect to itself alone is of relevance.
Therefore it suffices to consider (the probability distribution of) the positions of one
particle over time. In reality particles can interact, so actually the temporal evolution of
the tagged particle’s position is influenced by the configuration of its surrounding. As I
describe the state of the system only by the position of the one tagged particle, this fact
can lead to a non-Markovian behaviour of the system (earlier states of the system can
influence the hidden variables, i.e. the configuration of the neighbourhood, influencing
in turn the further evolution). The simplification which makes the problem tractable is
to postulate Markovian behaviour, i.e. that the probability distribution of the states of
the system at some later time are only a function of the state of the system now.

The temporal evolution of the probability density is therefore defined by specifying the
transition rates between the sites on the lattice. I write (K(∆x))µ,λ for the transition rate
of the particle from sublattice λ in the cell x to sublattice µ in the cell x+ ∆x. Put another
way, the entry in row µ, column λ of the matrix K(∆x) multiplied by an infinitesimal
amount of time is the probability for a particle on the sublattice λ to jump onto the site µ
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of the cell displaced by ∆x within this amount of time. For mass conservation I put the
overall leaving rate from the sublattice λ into (K())λ,λ but counted negatively:∑

(∆x,µ),(,λ)

(
K(∆x)

)
µ,λ

= −
(
K()

)
λ,λ
. (2.2.1)

I require detailed balance, this means that in equilibrium there should be no net flux
between two states of the system:(

K(∆x)
)
µ,λ

pλ =
(
K(−∆x)

)
λ,µ

pµ (2.2.2)

where pλ is the equilibrium probability for a particle to reside on sublattice λ.
My goal is to compute the temporal evolution of probabilities, so I introduce an

ensemble of systems (i.e. an ensemble of particles). This ensemble is completely
specified by (c(x, t))λ, the concentration (i.e. the ratio) at time t of the particles in the
ensemble which reside in the cell x on the sublattice λ. With above definition of K the
temporal derivative of the concentration c can now be written as(

ċ(., t)
)
λ

=
∑
µ

(
K(.)

)
λ,µ
∗
(
c(., t)

)
µ
, (2.2.3)

where the symbol ∗ denotes convolution in space. This now explains where K got its
symbol: it is the matrix-valued diffusion kernel.

Just as such equations are customarily solved I apply the element-wise spatial Fourier
transformation, that means F

(
(c(., t))λ

)
= (ĉ(., t))λ, analogously for K:(

˙̂c(q, t)
)
λ

=
∑
µ

(
K̂(q)

)
λ,µ
·
(
ĉ(q, t)

)
µ
, (2.2.4)

or put more elegantly
˙̂c(q, t) = K̂(q) · ĉ(q, t), (2.2.5)

understood as matrix multiplication. An equation like that is one of the first problems
encountered in the analysis of ordinary differential equations. Defining exponentiation
for matrices via the series expansion of the scalar-valued exponential function, the
solution to this ordinary differential can be immediately given:

ĉ(q, t) = eK̂(q)t · ĉ(q, 0). (2.2.6)

Remembering that the vector notation of the concentration is just a shorthand for a
scalar-valued concentration of the form

∑
λ (c(., t))λ ∗ δ(. − rλ), its Fourier transform is

therefore
∑
λ (ĉ(., t))λ exp(−iqrλ).

Let now fλµ (∆x,∆t) be the probability distribution for finding a particle at time ∆t on
the site µ of cell ∆x if it was at time 0 at site λ of cell . The spatial Fourier transform
of this function is (eK̂(q)∆t)µ,λ (use Eq. (2.2.6) with an initial condition c equal to 1 at site
 and sublattice λ and take entry µ of the result). Just considering the particles from
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sublattice λ would give for the self-correlation function
∑
µ fλµ (x − rµ + rλ,∆t). Taking

into account the particles starting from all sublattices with their respective weights pλ
gives

Gs(∆x,∆t) =
∑
µ

∑
λ

fλµ (∆x − rµ + rλ,∆t)pλ, (2.2.7)

and in the Fourier domain

Is(q,∆t) := F (Gs(.,∆t))(q) =
∑
µ

e−iqrµ
∑
λ

(
eK̂(q)∆t

)
µ,λ

pλeiqrλ . (2.2.8)

For reasons that will become clear in Section 3.4, Is goes under the name incoherent
intermediate scattering function.

To put Eq. (2.2.8) more elegantly, I first define the 1 ×Λ-matrix E = (e−iqr1 . . . e−iqrΛ),
the Λ×Λ-diagonal matrix P with the entries p1 . . . pΛ in the diagonal, and the Hermitized
diffusion kernel in reciprocal space

K′(q) :=
√

P−1K̂(q)
√

P. (2.2.9)

Because each component of K(∆x) is real, taking the component-wise complex conjuga-
tion of its Fourier transform is equivalent to inverting the independent variable:

K̂(−q) = K̂(q). (2.2.10)

To show that K′(q) is actually Hermitian I first restate Eq. (2.2.2):

K(∆x)P =
(
K(−∆x)P

)T
= PKT(−∆x), (2.2.11)

which naturally also holds for its Fourier transform

K̂(q)P = PK̂
T
(−q). (2.2.12)

Multiplying this equality from both sides by
√

P−1 and using Eq. (2.2.10) leads to√
P−1K̂(q)

√
P =

√
PK̂

T
(−q)

√
P−1 =

√
PK̂
∗

(q)
√

P−1, (2.2.13)

where (. . .)∗ denotes the adjoint matrix, thereby proving the claim.
With these definitions Eq. (2.2.8) reads

Is(q,∆t) = E(q) exp
(
K̂(q)∆t

)
PE∗(q) = E(q) exp

(√
PK′(q)

√
P−1∆t

)
PE∗(q)

= E(q)
√

P exp
(
K′(q)∆t

)√
PE∗(q).

(2.2.14)

From

Is(q,∆t) = Is(q,∆t)∗ =
(
E(q)

√
P exp

(
K′(q)∆t

)√
PE∗(q)

)∗
= E∗∗(q)

√
P∗ exp

(
K′∗(q)∆t

)√
P∗E∗(q) = E(q)

√
P exp

(
K′(q)∆t

)√
PE∗(q)

= Is(q,∆t),
(2.2.15)
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where the first equality followed trivially from considering Is an 1 × 1-matrix and the
following equalities from the Hermitianness of K′ and the rules for matrix transposition,
it follows that Is is real. Using this fact, Eq. (2.2.10) and the definition of E(q)

Is(q,∆t) = Is(q,∆t) = E(−q)
√

P exp
(
K′(−q)∆t

)√
PE∗(−q) = Is(−q,∆t), (2.2.16)

so Is is in fact even and real-valued. Therefore also Gs, being the back-transform of an
real-valued even function, is even (and real-valued).

This is at first glance surprising, as the lattice’s being composed of sublattices will in
the general case destroy the inversion symmetry of the underlying Bravais lattice. The
key point in above derivation, however, was the invocation of detailed balance. This
principle just says that the same number of atoms hop from site A to site B as from site B
to site A, so even if the fluxes exiting site A have no inversion symmetry, the other sites
make up for that imbalance, leading to an even correlation function.

It is instructive to write Is in yet another way. Diagonalizing K′, i.e. writing

K′(q) = V(q)D(q)V∗(q), (2.2.17)

with V(q) a unitary matrix and D(q) a diagonal matrix with real (because K′ is Hermitian)
non-positive (see Section A.1) diagonal entries, Eq. (2.2.14) reads

Is(q,∆t) = E(q)
√

P exp
(
V(q)D(q)V∗(q)∆t

)√
PE∗(q)

= E(q)
√

PV(q) exp
(
D(q)∆t

)
V∗(q)

√
PE∗(q)

=
∑
λ

e(D(q))λ,λ∆t
∣∣∣∑
µ

e−iqrµ √pµ
(
V(q)

)
µ,λ

∣∣∣2. (2.2.18)

Is(q,∆t) for a fixed q is therefore a sum of Λ (possibly degenerate) exponential decays,
where the respective decay times are given by the inverse of the diagonal entries in D(q)
and the respective weights are a function of the occupation probabilities of the sublattices
pλ, the geometry within the unit cell rλ in relation to q, and the jump frequencies between
the various sites.

I want to point out an analogy of the present problem to another one most solid state
physicists are probably more familiar with: phonon dispersion. In a crystal composed
of Λ sublattices there are Λ phonon states for a given wave-vector q, one acoustic and
Λ − 1 optical phonons. The eigenvalues of K′(q) (which are the diagonal entries of D(q))
behave similarly: for small q they can be divided into one value describing the decay of
long-range correlations and Λ − 1 values describing the fluxes between the sublattices.
Considerations along the lines of the proof in Section A.1 show that the appearance of
an additional eigenvalue equal to zero at a q equal to a reciprocal lattice vector (apart
from the “acoustic” eigenvalue) is equivalent to the lattice’s decomposing into two (or
more) systems of sublattices, so that there is no flux from sites in one system to sites in
the other (in the phonon analogy this would correspond to the artificial example of two
interleaved lattices which do not interact, leading to an optical phonon branch behaving
like an additional acoustic branch). A non-trivial case is the interstitialcy mechanism of
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diffusion in the diamond lattice, see Section 4.1. In this case there is no flux between the
two sublattices, so for a q equal to a reciprocal lattice vector the intermediate incoherent
scattering function does not decay in time.

I want to treat now Eq. (2.2.18) in the limit of small q for the non-degenerate case,
i.e. where the lattice does not decompose. Using Eq. (2.2.1) it follows that the diagonal
vector of

√
P, in the following denoted

√
p, is the “acoustic” eigenvector of K′() cor-

responding to the eigenvalue 0. As
√

PE∗(q) converges to
√

p for q → , the weight
of the “optical” decays in Eq. (2.2.18) vanishes, leaving only the “acoustic” decay, the
eigenvalue of which goes to 0. For computing the behaviour at small q of this eigenvalue,
in the following denoted d(q) and defined by the equation

d(q)v(q) = K′(q)v(q), (2.2.19)

I write the relevant quantities as power series in q:

d(q) = d0 + d1(q) + d2(q) + O(q3),

v(q) = v0 + v1(q) + v2(q) + O(q3),

K′(q) =
√

P−1
(
K0 + K1(q) + K2(q)

)√
P + O(q3).

(2.2.20)

Here quantities with 1 in the exponent are linear functions of q and quantities with 2 are
bilinear functions. Expanding in a power series is valid because in the non-degenerate
case d(q) has a multiplicity of 1 everywhere around q =  and is therefore an analytical
function of the coefficients of the characteristic polynomial of K′(q). By construction d0 is
0 and v0 is

√
p, but also d1 is 0 because K′(q) and therefore also its eigenvalues are even

functions in q. This leads to the necessity for the linear terms in q on the right-hand side
of Eq. (2.2.19) to cancel for all q, therefore

K1(q)p + K0
√

Pv1 = 0. (2.2.21)

K0 is not invertible, so
√

Pv1 is given by

√
Pv1 = −(K0)−1K1(q)p + sp. (2.2.22)

Here (K0)−1 denotes the Moore-Penrose pseudoinverse of K0 and sp spans the kernel of
K0 due to Eqs. (2.2.1) and (2.2.2) and the fact that the rank of the kernel is 1.

The quantity of interest d(q) follows then as

d(q) = v(q)Tda(q)v(q) = v(q)TK′(q)v(q)

= v(q)T
√

P−1
(
K2
√

Pv0 + K1
√

Pv1 + K0
√

Pv2
)

+ O(q3)

= e
(
K2
√

Pv0 + K1
√

Pv1
)

+ O(q3)

= e
(
K2(q) − K1(q)(K0)−1K1(q)

)
p + O(q3)

(2.2.23)
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with e = (1, . . . , 1) and observing the cancellation of various terms. The relevant matrices
are explicitely given by

K0 =
∑
∆x

K(∆x),

K1(q) = −i
∑
∆x

(q∆x)K(∆x),

K2(q) = −
∑
∆x

(q∆x)2

2
K(∆x),

(2.2.24)

so Eq. (2.2.23) is a non-negative (see Section A.1) quadratic form for small q

d(q) = qTDq + O(q3), (2.2.25)

and the intermediate incoherent scattering function Eq. (2.2.18) reads for small q

Is(q,∆t) = e−q
TDq∆t. (2.2.26)

The description of diffusion in macroscopic terms is given by Fick’s laws. In Fick’s first
law the diffusion tensor D is defined via the phenomenological linear relation between
concentration gradient and mass flux

j = −D∇c. (2.2.27)

Invoking mass conservation leads to Fick’s second law

ċ = ∇D∇c, (2.2.28)

or in reciprocal space
˙̂c(q, t) = −qDqĉ(q, t). (2.2.29)

Solving this equation with a delta distribution as initial condition gives

ĉ(q, t) = e−q
TDqt. (2.2.30)

Therefore the quadratic form D describing the behaviour of the intermediate incoherent
scattering function in Eq. (2.2.26) at small q is nothing else than the macroscopic diffusion
tensor. It is given by the macroscopic limit of the self-correlation function which is
experimentally mainly determined from the spreading of a small amount of radioactive
tracer atoms, so it is customarily called the tracer diffusion tensor.

In the degenerate case, where the lattice decomposes into mutually disconnected
sets of sublattices, the problem can be solved on each set alone. Note that this can
give different quadratic forms D for the distinct sets of sublattice. Therefore the non-
degeneracy assumption in the derivation of Eq. (2.2.26) is not just for convenience, in
fact in the general case the macroscopic description by Fick’s laws is not valid. For the
above-mentioned case of interstitialcy diffusion in the diamond lattice both sublattices
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behave equally at small q, so the partial intermediate incoherent scattering functions can
be merged and the phenomenological macroscopic behaviour is recovered.

In the special case where the particles sit on a Bravais lattice and therefore all sites
are equivalent, the diffusion kernel K(∆x) is scalar-valued, has inversion symmetry and∑

∆x K(∆x) = 0. Defining

Γinc(q) = −K̂(q) = −F (K)(q) = −
∑
∆x

K(∆x) cos(q∆x)

=
∑
∆x

K(∆x)
(
1 − cos(q∆x)

)
,

(2.2.31)

Eq. (2.2.18) has the concise form

Is(q,∆t) = e−Γinc(q)∆t. (2.2.32)

Γinc is called the incoherent linewidth, as quasi-elastic methods measure it as a line
broadening (see Section 3.1). In the Bravais case Eq. (2.2.23) and equivalently Eq. (2.2.31)
simplify to

d(q) = Γinc(q) =
∑
∆x

K(∆x)
(q∆x)2

2
(2.2.33)

for small q. Additionally invoking cubic symmetry leads to the ellipsoid described by the
quadratic form D becoming a sphere, therefore diffusion becomes isotropic, completely
specified by the scalar-valued tracer diffusion constant D with

D =
∑
∆x

K(∆x)
|∆x|2

6
. (2.2.34)

This equation is called the Einstein relation, where the additional factor 3 in the denomi-
nator compared to Eq. (2.2.33) is due to the value of (q∆x)2 averaged over all directions
being

〈(q∆x)2〉 =
|q|2|∆x|2

3
. (2.2.35)

It is worth reflecting on the approximations inherent in this section’s considerations.
First, in actual metallic systems in most cases diffusion does not happen by spontaneous,
unprovoked hopping, rather it is the result of the migration of a vacancy. This fact
leads to correlations between hopping events. These correlations can, however, be
satisfactorily incorporated into the model in the framework of the so-called encounter
model (see Section 3.5). The second issue, the influence of the particle’s surroundings,
was already addressed at the beginning of this section. With interacting particles the
jump probabilities are not a strict function of the initial and target sublattices, but
they vary with the surroundings. This leads to the fact that there is not one single
well-defined decay time per sublattice, so the decay gets “stretched” due to averaging
over the distinct surroundings, corresponding to different exponential decays. Still, in
most experimental studies this effect is not drastic, and the data can be fitted by one
exponential per sublattice.
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2.3. The pair-correlation function

This section gives an analytic theory of the pair-correlation function in the case of short-
range order on the lattice. The simplification introduced in Section 2.2, i.e. describing the
systems in the ensemble only by the position of the tagged particle and accounting for
the different surroundings only through an average “effective” surrounding, does not
work here, as the very essence of the pair correlation function lies in the correlation with
other particles. Therefore the temporal evolution of the positions of all the particles in
the system has to be described in a unified approach, explicitly treating the correlations.
Nevertheless, in order to obtain analytic results, some approximations have to be made,
namely the high-temperature limit, i.e. to treat correlations due to the energetics as
first-order perturbations. A further assumption is that the Hamiltonian is given via
pairwise interactions. Considering several sublattices would only obfuscate the ideas
presented here, so I assume the particles to sit on sites of a Bravais lattice. The derivation
presented here leads to the same results as the one given by Sinha and Ross (1988), but
in my opinion it is clearer and more easily understandable. For a quicker, although less
fundamental treatment of this problem see the last paragraphs of this section.

A state of the system is described by the occupation function σ, that is, σ(x) = 1 if the
site x is occupied by a particle and σ(x) = 0 if not. The most general Hamiltonian for
pair potentials is given by

H(σ) = V0 + V1

∑
x

σ(x) +
∑
x,y

V(x − y)σ(x)σ(y). (2.3.1)

In the following only the differences between energies of states in the canonical ensemble
will be required, so the expression

H′(σ) =
∑
x,y

V(x − y)σ(x)σ(y) (2.3.2)

can be used without loss of generality. I write

∆E(x; ∆x, σ) = H′(σ2) −H′(σ1) (2.3.3)

for the difference in energy between a state σ1 with

σ1(y) =


1 y = x

0 y = x + ∆x

σ(y) else

(2.3.4)

and a state σ2 with

σ2(y) =


0 y = x

1 y = x + ∆x

σ(y) else.

(2.3.5)
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Described in words, ∆E(x; ∆x, σ) is the energy gained (or lost) when moving a particle
from x to x + ∆x in the environment specified by σ. I write Es(x,x + ∆x; σ) for the
energy of the saddle point in the energy landscape on the path from x to ∆x, relative
to the average of the initial and final energy H′(σ1) and H′(σ2). Equivalently stated,
the energy necessary to invest for raising a particle on its way from x to ∆x onto
the saddle point is given by Es(x,x + ∆x; σ) + ∆E(x; ∆x, σ)/2, for moving it back it is
Es(x,x + ∆x; σ) −∆E(x; ∆x, σ)/2. These concepts will become more clear by means of an
example in Section 4.3.

There are two equivalent possible choices for the fundamental dynamic process:
either the particles hop into empty sites (and do not hop if the prospective target site
is occupied) or the occupancy of two sites is exchanged, i.e. if exactly one of the two is
occupied, after the exchange the other is occupied, if either both are occupied or both
are unoccupied, nothing changes. I use the latter concept, as it is symmetric under the
operation σ→ 1 − σ. The rate of exchanges of the occupances of x and x + ∆x can then
be written

ω = ν∆xe−
∆E(x;∆x,σ)

2kBT e−
Es(x,x+∆x;σ)

kBT

= ν∆xe−
Es(∆x)

kBT e−
∆E(x;∆x,σ)

2kBT e−
∆Es(x,x+∆x;σ)

kBT ,
(2.3.6)

where Es(∆x) is the mean saddle point energy for a jump along ∆x with ∆Es(x,x+ ∆x; σ)
being the variations around this mean value and ν∆x the attempt frequency for such a
jump.

I will now treat the temporal evolution of the system, where the system is initially in
the state σ. Obviously a given site x can either be occupied or unoccupied, so σ(x) is
either 0 or 1. It will turn out that the equation describing the evolution is in first order
linear in σ, therefore the same relationship holds also for the expected value, that is the
average value over an ensemble of systems. The reader is invited to choose the most
convenient setting, either a concrete state and transition probabilities or expected values
and their temporal evolution.

σ̇(x) =
∑
∆x

(
σ(x + ∆x)

(
1 − σ(x)

)
e

∆E(x;∆x,σ)
2kBT − σ(x)

(
1 − σ(x + ∆x)

)
e−

∆E(x;∆x,σ)
2kBT

)
ν∆xe−

Es(x,x+∆x;σ)
kBT

=
∑
∆x

ν∆xe−
Es(∆x)

kBT e−
∆Es(x,x+∆x;σ)

kBT

(
σ(x + ∆x)

(
1 − σ(x)

)
e

∆E(x;∆x,σ)
2kBT −

− σ(x)
(
1 − σ(x + ∆x)

)
e−

∆E(x;∆x,σ)
2kBT

)
=

∑
∆x

ν̃∆x

((
σ(x + ∆x) − σ(x)

)(
1 − ∆Es(x,x + ∆x; σ)

kBT

)
+

+
∆E(x; ∆x, σ)

2kBT

(
σ(x) + σ(x + ∆x) − 2σ(x)σ(x + ∆x)

)
+ O

(
(E/kBT)2

))
(2.3.7)

Here E is a measure for the typical energy variations, in both the saddle point and
the stable positions, i.e. ∆E(x; ∆x, σ) = O(E) and ∆Es(x,x + ∆x; σ) = O(E). ν̃∆x =
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ν∆x exp(−Es(∆x)/kBT) is the raw jump frequency neglecting the influence of energy and
correlations.

The system is assumed to be only short-range ordered, this means that〈
σ(x)σ(y)

〉
−

〈
σ(x)

〉〈
σ(y)

〉
= O(E/kBT) (2.3.8)

for x , y. As both ∆E(x; ∆x, σ) and ∆Es(x,x + ∆x; σ) are linear functionals with respect
to σ which depend neither on σ(x) nor on σ(x + ∆x), it follows that〈

∆E(x; ∆x, σ)σ(x)
〉
−

〈
∆E(x; ∆x, σ)

〉〈
σ(x)

〉
= O

(
(E/kBT)2

)
, (2.3.9)

analogously for similar quantities. Applying this to Eq. (2.3.7) and cancelling (noting
that

〈
σ(x)

〉
is equal to the concentration of particles c) shows that

σ̇(x) =
∑
∆x

ν̃∆x

(
σ(x + ∆x) − σ(x) +

∆E(x; ∆x, σ)
kBT

c(1 − c)
)

(2.3.10)

in first order approximation, in particular the influence of the configuration on the
energetics of the saddle point vanishes, only the energies of the initial and the final state
matter.

Going back to Eq. (2.3.2), ∆E(x; ∆x, σ) is explicitly given by

∆E(x; ∆x, σ) =
∑
y

V(x + ∆x − y)σ(y) −
∑
y

V(x − y)σ(y)

=
∑
z

V(z)
(
σ(x + ∆x − z) − σ(x − z)

)
.

(2.3.11)

Defining the amplitude A = F (σ) and using basic results about the Fourier transform of
convolutions, the transform in x of above equation reads

F
(
∆E( . ; ∆x, σ)

)
(q) = V̂(q)A(q)(eiq∆x − 1), (2.3.12)

where V̂ is the transform of the pair potential V. Using this result the Fourier transform
of Eq. (2.3.10) can be given as

Ȧ(q) =
∑
∆x

ν̃∆x

(
A(q)eiq∆x − A(q) +

V̂(q)A(q)(eiq∆x − 1)
kBT

c(1 − c)
)

= A(q)
∑
∆x

ν̃∆x

(
cos(q∆x) − 1

)(
1 +

V̂(q)c(1 − c)
kBT

)
.

(2.3.13)

In this section’s nomenclatura Γinc now reads (cp. Eq. (2.2.31))

Γinc(q) =
∑
∆x

ν̃∆x

(
1 − cos(q∆x)

)
, (2.3.14)
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but this time the relevant quantity is the coherent linewidth

Γcoh(q) = Γinc(q)
(
1 +

V̂(q)c(1 − c)
kBT

)
, (2.3.15)

giving 〈
A(q, t)

〉
= A(q, 0)e−Γcoh(q)t. (2.3.16)

Writing the time dependence of σ explicitly, the pair-correlation function G(∆x,∆t) is
defined by

G(∆x,∆t) =
〈
σ(., .)σ(. + ∆x, . + ∆t)

〉
. (2.3.17)

Note that

G(∆x,∆t) =
〈
σ(., .)σ(. + ∆x, . + ∆t)

〉
=

〈
σ(. − ∆x, . − ∆t)σ(., .)

〉
=

〈
σ(., .)σ(. − ∆x, . − ∆t)

〉
= G(−∆x,−∆t).

(2.3.18)

Due to time-inversion symmetry G is even in time, using this fact and above result it is
also even in space.

Again using the interplay of Fourier transforming and convoluting the coherent
intermediate scattering function is given by

I(q,∆t) := F
(
G(.,∆t)

)
(q) =

〈
A(q, .)Â(q, . + ∆t)

〉
=

〈
A(q, .)Â(q, .)e−Γcoh(q)∆t

〉
= ISRO(q)e−Γcoh(q)∆t.

(2.3.19)

ISRO(q) is the expected value of the intensity, the squared modulus of the amplitude, due
to short-range order, for a given q.

In the framework of the approximations invoked here the intensity can be directly
related to the potential via the Clapp-Moss-relations (Clapp and Moss, 1966), see
Section A.2:

ISRO(q) =
1(

1 +
V̂(q)c(1−c)

kT

) , (2.3.20)

therefore
Γcoh(q) =

Γinc(q)
ISRO(q)

. (2.3.21)

The intensity ISRO(q) is measured in Laue units, where one Laue unit is Nc(1 − c) with N
the number of lattice sites (this is just the value of the configurational diffuse scattering
of a random alloy). In particular it follows that the coherent linewidth is equal to the
incoherent linewidth for vanishing interactions, and Is = I.

Just as with the intermediate incoherent scattering function in Section 2.2 also here
the behaviour of Γcoh(q) for small q is given by a quadratic form corresponding to a
diffusion tensor D. In this case, however, it describes the decay of chemical fluctuations
in the macroscopic limit, I will therefore call it the chemical diffusion tensor (or chemical
diffusion constant in the cubic case). An analogon of the Einstein relation also holds here,
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by Eq. (2.3.21) the diffusion constant is just the value of the tracer diffusion constant in
Eq. (2.2.34) divided by ISRO().

The fact that the relaxation of fluctuations (i.e. the decay of the coherent intermediate
scattering function) becomes slower than the value given by Chudley and Elliott (1961)
for positions in reciprocal space with high intensity has been known qualitatively
under the name de Gennes-narrowing (de Gennes, 1959) from studies of liquids and
colloidal glasses (Dasannacharya and Rao, 1965; Caronna et al., 2008). It is not difficult
to understand: a high ISRO(q) means that the particles prefer to build local arrangements
corresponding to a high Fourier component at q. The reason can only be that such
arrangements are energetically favoured compared to other arrangements, therefore it
takes more energy to break such arrangements up, making them longer-lived. However,
the fact that the decay is in the first approximation still a single exponential given by
the very simple relation (2.3.21), being only a function of the static energetics, is not so
obvious. The simulations in Section 4.3 elucidate what happens when the approximations
invoked here break down.

I want also to sketch another, less fundamental way of deriving Eq. (2.3.21). I write
the pair-correlation function as the sum of the self-correlation function and the distinct-
correlation function

G(∆x,∆t) = Gs(∆x,∆t) + Gd(∆x,∆t), (2.3.22)

equivalently in reciprocal space

I(q,∆t) = Is(q,∆t) + Id(q,∆t). (2.3.23)

The behaviour of Is(q,∆t) was derived in Section 2.2, it decays with the rate Γinc(q). The
assumption of equilibrium leads to time-inversion symmetry, therefore Eq. (2.2.32) can
be generalized to negative time differences

Is(q,∆t) = e−Γinc(q)|∆t|. (2.3.24)

Gd(∆x,∆t) and therefore Id(q,∆t) can be seen as the reaction of the surrounding particles
to the occupation of site . This reaction happens via diffusion and will therefore vary
smoothly in time, just as the heat conduction equation smoothes out singularities in the
initial or boundary data. Id(q,∆t) obviously also has time-inversion symmetry, so with it
being smooth everywhere it has a vanishing temporal derivative at ∆t = 0. Therefore

− Γcoh(q)ISRO(q) =
d

d∆t
I(q,∆t)

∣∣∣∣
∆t=0+

=
d

d∆t
Is(q,∆t)

∣∣∣∣
∆t=0+

= −Γinc(q), (2.3.25)

and Eq. (2.3.21) follows.
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3. Linking theory to experiments

In Chapter 2 the theory of the self- and the pair-correlation function for particles diffusing
on a lattice was given. This chapter will give the connection to the scientific problem at
hand, studying atomic diffusion in crystalline matter.

3.1. Methods for measuring atomic diffusion

The most capable experimental techniques for this kind of research are scattering
techniques. The major ones of these are (listed chronologically):

• Quasi-elastic neutron scattering (QENS): This method analyzes the energy trans-
ferred from the sample to the neutron as a function of q. Due to the relation E = ~ω,
this constitutes an experimental determination of the temporal Fourier transform
of the intermediate scattering function, the so-called dynamic structure factor
S(q, ω). As the neutrons are scattered by the nuclei, they are sensitive to the distinct
isotopes. Using this fact and fine-tuning the isotope composition of the sample
often either the coherent or the incoherent scattering can be made to dominate
(see Section 3.4), which corresponds to measuring the self- or the pair-correlation
function. QENS is in principle a very versatile method, but first, not all elements
are suited to this method, and second, the available flux is rather low, implying
long measuring times. Furthermore, the technical improvement of neutron sources
has happened only at a slow pace during the last decades, so this situation cannot
be expected to improve much in the near future.

• Mößbauer spectroscopy: This method exploits the fact that certain nuclei have very
narrow energetical states and that in a solid there is a non-vanishing probability
for nuclear transitions to happen without interference of thermal vibrations. If an
atom diffuses while undergoing a nuclear transition this leads to a broadening of
the linewidth due to the emitted wave train apparently decomposing into several
sub-trains with distorted phase relation at the observer. Probing the line shape as
a function of q by employing the Doppler shift when moving the source relative
to the sample again leads to S(q, ω), just as with QENS, but here the scattering is
purely incoherent, also the accessible q lie on a sphere due to the fixed energy of
the nuclear transition. By far the most suited isotope for Mößbauer spectroscopy
is 57Fe, but this essentially limits its application to systems containing iron. An
advantage Mößbauer spectroscopy has over the other methods mentioned here is
that it is a tabletop technique, feasible in a small laboratory.
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• Nuclear resonant scattering (NRS): This is in fact simply Mößbauer spectroscopy
in the time domain, it therefore in principle directly measures the incoherent
intermediate scattering function Is(q, t). Instead of a radioactive source it uses
pulsed synchrotron radiation, thanks to which measurements are much faster
and can even be done on a single atomic layer, but obviously it needs access to a
synchrotron.

• X-ray photon correlation spectroscopy (XPCS): This is the method this thesis deals
with. In short, it correlates the temporal variation of the intensity scattered from
coherent synchrotron radiation at the sample. Contrary to Mößbauer spectroscopy,
nuclear resonant scattering and most implementations of QENS this yields the
coherent intermediate scattering function I(q, t). It is in principle not limited to
certain isotopes or elements, and it has a great potential for the future due to the
recent or imminent launch of new X-ray sources.

XPCS works directly in the time domain: it measures how fast the scattered intensity
fluctuates. Accessible times are in principle not limited, in practice the stability of the
beam allows measurements on the scale of tens of minutes or even an hour. QENS and
Mößbauer spectroscopy work in the energy domain, however. Slow processes lead to
narrow lines, so the limited experimental resolution dictates processes on the order of
nanoseconds or faster. Also NRS is limited to this range by the natural lifetime of the
excited state.1

Doing a scattering experiment essentially amounts to performing the spatial Fourier
transform of the scatterer density (electrons or nuclei, depending on the method). The
intermediate scattering function is therefore a natural way for describing the results of
experiments, as it describes the processes in reciprocal space.

3.2. Theory of scattering

This section gives the fundamentals of scattering at a classical static system in the
kinematical approximation for electro-magnetic radiation and particles, see e.g. Als-
Nielsen and McMorrow (2001) for a thorough treatment. An illustration of the process is
given in Fig. 3.1.

The electric field of a monochromatic plane electro-magnetic wave with angular
frequency ω and wave-vector ~k is given in complex notation by

~Ei(~x, t) = ~E0ei(~k~x−ωt). (3.2.1)

This oscillating field exerts a force on a charged particle with mass m and charge q,
located at position ~x0,

~F(t) = ~Ei(~x0, t)q = ~E0qei(~k~x0−ωt). (3.2.2)

1Quasi-elastic methods are therefore ideally suited for the measurement of phonons.
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~k′
~q

~k

~x0

dV

Figure 3.1.: Illustration of the quantities used for describing the scattering process. dV
is the differential scattering volume positioned at ~x0, ~k and ~k′ are the wave-
vectors of the incident and outgoing radiation, respectively, ~q = ~k′ −~k is the
wave-vector transfer.

If the particle can be considered as free, i.e. if its eigenfrequency ω0 is much smaller than
the frequency of the incident radiation ω, this leads to a displacement of the particle
from its equilibrium position

~d(t) = −
~E0q

mω2 ei(~k~x0−ωt) (3.2.3)

and therefore to a dipole moment

~p(t) = q~d(t). (3.2.4)

In Hertz’ theory the electric field at the position ~x far away from such an oscillating
dipole at ~x0 is given by an outgoing spherical wave

~Es(~x, t) =
ω2

ε0c2

(
(~x − ~x0) × ~p(t) × (~x − ~x0)

)
|~x − ~x0|2 G(~x − ~x0), (3.2.5)

where

G(~x) =
eik|~x|

4π|~x| (3.2.6)

and k = |~k|. Computing the elastic far-field scattering into the direction ~k′, that is for
large |~x| and ~x ‖ ~k′ with |~k′| = |~k|, this approximates to

~Es(~x, t) =
q2

4πε0mc2

~k′ × ~E0 ×~k′
k2

ei(~k~x−ωt)

|~x| e−i(~k′−~k)~x0 . (3.2.7)
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This can immediately be generalized to an arbitrary number of scatterers, described by
their number density n(~x0). Defining ~q = ~k′ −~k and r0 = q2/4πε0mc2, the magnitude of
the field is essentially the Fourier transform with respect to ~q of the scatterer density

Es(~x) = r0E0 sin(φ)
1
|~x|

(
F (n)

)
(~q) (3.2.8)

with φ the angle between ~k′ and ~E0; the direction of the field is the polarization of
the incident radiation projected onto the normal plane of the exiting radiation. When
scattering at electrons r0 = 2.82 × 10−15 m is called the Thomson scattering length.

The equivalent problem for scattering of an incident flux of particles of mass m,
described by a wave function

ψi(~x) = ψ0ei~k~x, (3.2.9)

at a particle which interacts with the incoming particles via a potential 2π~2

m bδ(~x − ~x0),
with b the scattering length, is solving the time-independent Schrödinger equation(

− ~
2m

∆ +
2π~2

m
bδ(~x − ~x0)

)
ψ(~x) = Eψ(~x) =

~2~k2

2m
ψ(~x) (3.2.10)

or (
∆ +~k2

)
ψ(~x) = 4πbδ(~x − ~x0)ψ(~x). (3.2.11)

Using the result that the fundamental solution for the Helmholtz operator(
−∆ −~k2

)
G(~x) = δ(~x) (3.2.12)

is an outgoing spherical wave

G(~x) =
eik|~x|

4π|~x| , (3.2.13)

the solution to Eq. (3.2.11) is given by a perturbation to the incoming wave

ψ(~x) = ψi(~x) − ψi(~x0)4πbG(~x − ~x0). (3.2.14)

In analogy to Eq. (3.2.7) the scattered part of the wave-function for scattering at one
particle can be written

ψs(~x) = −bψ0
ei~k~x

|~x| e−i(~k′−~k)~x0 , (3.2.15)

and for scattering at a system of particles with number density n(~x0) it is given by the
Fourier transformation of n

ψs(~x) = −bψ0
ei~k~x

|~x|
(
F (n)

)
(~q). (3.2.16)

As for both photons and particles the probability density is given by the absolute
square of the electric field or wave-function, respectively, both Eq. (3.2.8) and (3.2.16)
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lead to the number of photons/particles scattered into a given direction~k′ being given by
the Fourier transform of the scatterer density(

dσ
dΩ

)
(~k′) = σ

∣∣∣∣(F (n)
)
(~k′ −~k)

∣∣∣∣2, (3.2.17)

where the factor σ takes in the physics of scattering. From now on this factor (and the
influence of polarization) will be disregarded2 and the intensity as a function of the
wave-vector transfer be defined as squared modulus of the Fourier transform of the
scatterer density

I(~q) =
∣∣∣∣(F (n)

)
(~q)

∣∣∣∣2. (3.2.18)

Note that the number density of scatterers n(~x0) is equivalent to the description via the
spin operator σ in Section 2.3.

Here the scattered field was treated as a perturbation of the incident field. This is
called the first Born approximation or kinematical scattering. The physical situation
corresponds to the thin-sample limit, i.e. the path of the radiation through the material is
so short that the probability for a particle to be scattered multiple times (in the particle
view) is negligible. For the scattering of X-rays, this is normally fulfilled, as the absorption
cross section is orders of magnitude larger than the scattering cross section, necessitating
thin samples (from the point of view of scattering) in order to have any photons exiting
the sample. For other probes, e.g. neutrons, electrons, or resonant γ-quanta, this is not
the case and multiple-scattering effects can be appreciable.

3.3. From particles on a lattice to solid matter

Two points need clarification in order to link experiments on real physical systems
to the results of Chapter 2, pertaining to the very simple, abstract system of particles
on a lattice: First, in real crystals there is not one kind of particle on a partly empty
lattice, but elements (with possibly different isotopes) and vacancies or interstitials, and
second, possibly the atoms do not sit exactly on the positions described by the lattice
(due to disorder and elastic interactions), and even the lattice itself can have defects like
dislocations.

For the first point a number of cases have to be considered: In a sample consisting of
only one atomic species an incoherent method sensitive to this element will obviously
measure the incoherent intermediate scattering function of this species. Self-interstitials
will not be visible at all (as their number is always very low), and vacancies are also
not directly visible, only through their effects: the atoms’ diffusivity scales with the
vacancies’ number, and they lead to correlated jumps (see Section 3.5). A coherent
method, however, will only see the vacancies or interstitials (whichever is the dominant

2Note, however, that at the ESRF both the incoming radiation is polarized in the horizontal plane and
scattering is mostly done in horizontal geometry. For small-angle scattering the effect is negligible, but
with a scattering angle of 45◦ the scattered radiation is reduced by a factor of two.
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defect), that means, the situation corresponds to the one in Section 2.3 with the particles
being the vacancies (or interstitials). This is because a coherent method computes the
Fourier transform of the scatterer density, and the constant background of the filled
lattice only affects the (unmeasurable) Fourier component for q = 0. The number of
these defects is unfortunately always very low, ruling out this kind of experiment with
today’s sources.

If the sample is a solid solution of two or more elements, with incoherent methods
it is in principle possible to measure the incoherent intermediate scattering functions
of each constituent separately, either by using different incident radiation in the case
of Mößbauer spectroscopy or nuclear resonant scattering, or by preparing isotopically
different, but chemically identical samples for QENS. For a coherent method and a
sample consisting of two elements, it is of no consequence to which element the status
‘occupied’ and to which the status ‘unoccupied’ in the setting of Section 2.3 is assigned,
as the difference again is only in the Fourier component for q = 0. The case of the sample
consisting of more elements is not within the scope of Section 2.3, in this case it would
be necessary to treat the interactions and correlations between each two constituents
separately.

If finally the sample is an ordered alloy, say an A-rich intermetallic with AB-order,
where the surplus A-atoms form structural antisites, incoherent and coherent methods
measure very different things: for an incoherent method sensitive to the A-atoms the
generic case of Section 2.2 applies, i.e. diffusion on distinct sublattices with high weight
of the A-sublattice and low weight of the A-atoms on the B-sublattice. For a coherent
method, however, the A-sublattice would be completely invisible, as it is fully ordered
(neglecting thermal defects) and therefore does not contribute to the diffuse intensity.
This case would therefore correspond to Section 2.3, where the lattice is the B-sublattice
and the particles are the structural A-antisites on the B-sublattice.

The second point in the list requiring clarification was the influence of lattice dis-
tortions and defects. In contrast to macroscopic methods such as radioactive tracer
experiments, the enhanced diffusivity in the vicinity of defects (dislocations, twins,
anti-phase boundaries in ordered alloys, or grain boundaries in the case of polycrys-
talline samples) normally does not influence the results. Tracer experiments measure
the average squared displacement, which can be dominated by the effect of defects.
Atomistic methods measure how fast correlations on atomic length scales decay on
average, and it therefore does not matter if a very small part of the atoms (the ones in
the vicinity of the defects) have displacements on the order of thousands of the atomic
length scale. Such a situation would give in the intermediate scattering function two
decays with very different timescales, where the fast component has a weight on the
order of the volume fraction of the defect, rendering it invisible. Therefore atomistic
methods intrinsically measure the equilibrium bulk diffusivity, making the question of
sample preparation much less critical.

Concerning the effect of lattice distortions: these generally happen in the case of
disorder, i.e. if there are sublattices which are not exclusively occupied by one element
only. This breaks the symmetry of the underlying lattice, and due to elastic interactions
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and relaxation the atoms will be displaced in relation to their ideal geometric positions.
For incoherent methods this results in the positions of the sublattices rλ in Eq. (2.2.8)
becoming a distribution, thereby smoothing the fluctuations of Is at high q. Coherent
scattering, however, is affected qualitatively by atomic displacements: Take an A-B solid
solution where the two elements have different sizes. The neighbours of, say, a B-atom
are displaced outwards from their average positions, the neighbours of an A-atom are
displaced inwards. Working out the scattering in a first approximation, this means that
a B-atom not only brings with it its distinct electron density distribution at its position,
but it also induces dipoles of electron density at the positions of its neighbours, as their
electron densities are moved outwards relative to their mean position. This can be
taken into consideration via the atomic form factors, leading to a contribution to the
diffuse intensity called displacement scattering. Therefore ISRO(q) in Eq. (2.3.19), which
is defined as the scattering due to disorder, i.e. from point-like particles on an ideal
lattice, is not directly accessible in scattering experiments. For a review of the treatments
of the connection between the configuration of an alloy and its scattered radiation see
Schönfeld (1999).

3.4. Coherent and incoherent scattering

In Section 3.2 it was stated that the scattered intensity is the squared modulus of the
Fourier transform of the scattering length density of the sample. Picture now a system of
particles at the fixed positions Rn with the scattering lengths bn (for simplicity assumed
as real). The scattered intensity for a given q is

I(q) =
∑
n1,n2

bn1bn2ei(Rn1−Rn2 )q. (3.4.1)

Assuming the scattering lengths bn to be independent identically distributed random
variables the expected value of the intensity is〈

I(q)
〉

=
∑
n1,n2

〈bn1bn2〉ei(Rn1−Rn2 )q =
∑
n1

〈b2
n1
〉 +

∑
n1,n2

〈bn1〉〈bn2〉ei(Rn1−Rn2 )q

=
∑
n1

b2
inc +

∑
n1,n2

b2
cohei(Rn1−Rn2 )q,

(3.4.2)

where binc is termed the incoherent scattering length

binc =

√
〈b2

n〉 − 〈bn〉2 (3.4.3)

and bcoh the coherent scattering length

bcoh = 〈bn〉. (3.4.4)

Especially for neutron scattering, taking the expected value in Eq. (3.4.2) is exper-
imentally inadvertently realized by the averaging of the detector over a range of q,
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therefore the detected intensity looks as if it was made up of a part scattered coherently
at the particles (showing the correlations in the positions) with a scattering length per
particle bcoh and of a part scattered incoherently (no angular variations) with a scattering
length per particle binc. The derivation presented here shows that the scattering itself
is obviously coherent, but that the deviations of the actual scattering lengths from the
mean value average out of the cross terms, leading to disproportionally higher self
terms and apparent incoherent scattering. This is very relevant for neutron scattering, as
elements can consist of different isotopes or have different spin states, both effects lead
to different scattering lengths for atoms which are chemically identical and therefore
randomly distributed. Consequently the correlation function probed by QENS is a sum
of a coherent and incoherent part (corresponding to pair- and self-correlation function,
respectively), with the weights depending on the isotopic composition.

X-rays, however, are not scattered at the nuclei, but at the electrons. In this case there
is a one-to-one correspondence between the scattering length density and the chemical
configuration, and XPCS is therefore an entirely coherent method.

3.5. Correlated jumps

In Chapter 2 the temporal evolution of the sample was assumed to be described by a
Markov process. Specifically the successive jumps of a particle were assumed to be
independent. In the case of solutes hopping from one interstitial site to the next, as it is
the case with small atoms like hydrogen, this is a valid assumption. In the overwhelming
number of metallic systems where diffusion is mediated by vacancies, however, this
does not hold any more. The reason is that the equilibrium concentration of vacancies
is always very small, therefore after one atom has moved into a vacancy, there is now
a vacancy behind it, leading to a jump probability higher than on average (and with a
tendency to reverse the jump) and thereby breaking the Markovian assumption.

In the limit of a vanishing vacancy concentration there is a solution to this problem,
the so-called encounter model (Eisenstadt and Redfield, 1963). As the timescale of
the successive jumps of a particle effected by one vacancy becomes separated from
the timescale between the encounters of a particle with different vacancies, it becomes
possible to treat these two stages separately. First the probabilities for the effective
displacements after one encounter are calculated, this can be done by numerical solution
of analytical expressions with arbitrary precision (Sholl, 1981). Apart from the encounters
where the effective displacement is zero, the fraction of which is approximately given
by the inverse of the coordination number, a few percent of the encounters lead to
displacement outside of the nearest-neighbour shell. These effective displacement
probabilities are then used with the theory of Chapter 2.

A high degree of order can be another reason for correlated jumps. In an ordered
alloy the vacancy has to choose its way in compliance with the requirement of keeping
the degree of order. This will be treated in greater detail by means of an example in
Section 4.2.
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3.6. Theory of XPCS

In this section I will work out how one measures the coherent intermediate scattering
function (and thereby the pair-correlation function) in an XPCS experiment. For a more
extensive treatment see Sutton (2006) and the references therein.

The intensity-intensity auto-correlation function is defined by

G(2)(q,∆t) = 〈I(q, .)I(q, . + ∆t)〉, (3.6.1)

its normalized version reads

g(2)(q,∆t) =
〈I(q, .)I(q, . + ∆t)〉
〈I(q, .)〉2 . (3.6.2)

As in Section 2.3 the scatterer density is denoted by σ(x, t) and its Fourier transform (the
amplitude) by A(q, t). With the definition of I(q, t) in Eq. (3.2.18) G(2)(q,∆t) reads

G(2)(q,∆t) =
〈
Ā(q, .)A(q, .)Ā(q, . + ∆t)A(q, . + ∆t)

〉
=

〈∫
dx1 . . .dx4σ(x1, .)σ(x2, .)σ(x3, . + ∆t)σ(x4, . + ∆t)eiq(x1−x2+x3−x4)

〉
=

∫
dx1 . . .dx4

〈
σ(x1, .)σ(x2, .)σ(x3, . + ∆t)σ(x4, . + ∆t)

〉
eiq(x1−x2+x3−x4).

(3.6.3)

This four-point correlation can be simplified under the assumption that the correlations
decay sufficiently fast, i.e. there exists a length ξ such that for distances |∆x| � ξ the
correlations have decayed to zero for practical purposes. In particular this assumption
implies that the correlation functions factorize:〈

σ(x1, t1)σ(x2, t2)
〉

=
〈
σ(x1, t1)

〉〈
σ(x2, t2)

〉
for |x1 − x2| � ξ (3.6.4)

Now I split the domain of integration into four sets:

V12;34 :=
{
(x1,x2,x3,x4) ∈

(
R3

)4∣∣∣ |x1 − x2| < ξ ∧ |x3 − x4| < ξ
}
,

V14;32 :=
{
(x1,x2,x3,x4) ∈

(
R3

)4∣∣∣ |x1 − x4| < ξ ∧ |x3 − x2| < ξ
}
,

V13;24 :=
{
(x1,x2,x3,x4) ∈

(
R3

)4∣∣∣ |x1 − x3| < ξ ∧ |x2 − x4| < ξ
}
,

(3.6.5)

and V′ the complement of the union of those.
For points in V′ there is obviously an i such that xi is distant from the other three x j, so

by the four-point analogon of Eq. (3.6.4) the expected value of the four-point product in
Eq. (3.6.3) can be split into the product of the expected value of a product of three and the
expected value of σ(xi, .), which is a constant, namely the concentration. Performing the
Fourier transform with respect to xi equates to 0 for q , 0, so V′ need not be considered
in Eq. (3.6.3).
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For the contribution of V13;24 in Eq. (3.6.3) I make the substitution x3 = x1 + ∆x1 and
x4 = x2 + ∆x2, again using factorization and the definition of G in Eq. (2.3.17) leads to∫

dx1d∆x1dx2d∆x2G(∆x1,∆t)G(∆x2,∆t)eiq(2x1+∆x1−2x2−∆x2), (3.6.6)

which obviously again gives 0 for q , 0 after integrating over dx1 or dx2. Therefore only
V12;34 and V14;32 need to be considered, by doing the appropriate substitutions Eq. (3.6.3)
reads

G(2)(q,∆t) =

∫
V12;34

dx1d∆x1dx3d∆x3G(∆x1, 0)G(∆x3, 0)e−iq(∆x1+∆x3)

+

∫
V14;32

dx1d∆x1dx3d∆x3G(∆x1,∆t)G(∆x3,−∆t)e−iq(∆x1+∆x3).
(3.6.7)

As G(∆x,∆t) is constant for |∆x| � ξ and for all ∆t, the integrations can be again extended
over the whole domain. With the definition of the coherent intermediate scattering
function this finally leads to

g(2)(q,∆t) =
I(q, 0)2 + I(q,∆t)2

I(q, 0)2 = 1 +

(
I(q,∆t)
I(q, 0)

)2

. (3.6.8)

In the literature this is often called the Siegert relation, which is normally written via the
normalized amplitude correlation function (or auto-correlation function of first order)

g(2)(q,∆t) = 1 +
(
g(1)(q,∆t)

)2
. (3.6.9)

There are three points to be noted: First, the dividing of the domain of integration
into subdomains and the subsequent factorizations did not take into account that there
is a subdomain V1234 where all four xi are close. It is clear, however, that also on V1234
the integrand in Eq. (3.6.3) is bounded and that the relative contribution of V1234 to the
integral in Eq. (3.6.3) becomes negligible when the size of the sample gets much bigger
than the correlation length ξ.

Second, in the above derivation the instantaneous intensity as the squared modulus of
the amplitude, which itself is given by the Fourier transformation of the scatterer density,
is the quantity of interest. However, in the experiment this instantaneous intensity is
detected in quanta, and in X-ray physics (contrary to most optical measurements) this
effect is not negligible, see Chapter 5. Given an instantaneous intensity I(q, t), the number
of photons detected in the time interval dt is a Poisson-distributed random variable
with expected value I(q, t)dt. Let now p(I1, I2) be the joint probability distribution for
the instantaneous intensities at a fixed q and at times t1 and t2, and let p(n1,n2|I1, I2) be
the joint probability distribution for the detected number of photons at this times with
given intensities I1 and I2. The crucial point now is that for t1 , t2 the quantization is
uncorrelated, i.e. the probability distribution factorizes:

p(n1,n2|I1, I2) = p(n1|I1)p(n2|I2) (3.6.10)
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Therefore correlating the actual numbers of detected photons

〈n1n2〉 =

∫
dI1dI2p(I1, I2)

∫
dn1dn2p(n1,n2|I1, I2)n1n2 =

=

∫
dI1dI2p(I1, I2)

∫
dn1p(n1|I1)n1

∫
dn2p(n2|I2)n2 =

=

∫
dI1dI2p(I1, I2)I1I2(dt)2 =

= 〈I1I2〉(dt)2

(3.6.11)

is equivalent to correlating the instantaneous intensity, justifying Eq. (3.6.1).
Third, in actual experiments the incoming wave is not an ideal flat, monochromatic

wave and the detector has a finite aperture, which can be pictured as if the sample is
illuminated by a number of plane waves with no phase relation and therefore with
no interference effects on accessible timescales between them. This leads to a partial
washing-out of the interference pattern, which is treated in detail in Section 6.2. The net
effect is just that the magnitude of the term in the measured auto-correlation function
due to interference is diminished:

g(2)(q,∆t) = 1 + β

(
I(q,∆t)
I(q, 0)

)2

, (3.6.12)

where β < 1 is the so-called coherence factor.
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4. Characteristics of diffusion in selected
systems

This chapter presents the systems which we have either measured in the course of this
thesis (see Chapter 7) or are planning to measure. Each system also serves as a prototype
to discuss general aspects of solid-state diffusion.

4.1. An open system — SixGe1−x with the diamond lattice

The semiconductors Si and Ge (and also C under special conditions) crystallize in
the diamond lattice. This lattice is not a Bravais lattice; it can be constructed from
two face-centred cubic lattices translated with respect to each other by [1/4, 1/4, 1/4],
therefore there are two crystallographically inequivalent sites in the primitive cell, see
Fig. 4.1. Another way to obtain this lattice is to imagine a 2 × 2 × 2 cubic supercell of the
body-centred cubic lattice and to take out every other bcc cell. This does not change the
nearest neighbour-distance, so the volume fill factor drops by a factor of two compared
to the bcc lattice. This large free volume is already an indication why metals do not

Figure 4.1.: The cubic cell of the diamond lattice. The distinct colours of the atoms denote
the two crystallographically inequivalent but chemically equivalent sites.
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crystallize in the diamond lattice as a metal tends to pack its atoms as close as possible
without significant overlap of the inner shells. Such a reasoning does not hold, however,
for the semiconductors with their covalent bonds, rather the diamond lattice leading to
to the sp3-hybridization is the natural choice here.

The large free volume also affects the diffusive behaviour of the atoms: contrary to
metals, where it is commonly accepted that vacancies are indispensable for self-diffusion,
here also diffusion mechanisms based on self-interstitials are conceivable. The relevant
mechanisms are therefore

• the vacancy mechanism: This is just the mechanism which is generally thought to
be responsible for self-diffusion in metals — a vacancy hops through the crystal,
which leads to nearest-neighbour jumps of the atoms.

• the interstitial mechanism: This means that diffusion happens via jumps of self-
interstitials from one interstitial site to the next. Contrary to metals this mechanism
is plausible in the diamond lattice as here first there is free volume, therefore a
self-interstitial is not prohibitively costly in energy, and second the interstitial sites
are interconnected with a distance between them equal to the nearest-neighbour-
distance of the regular sites.

• the interstitialcy mechanism: This mechanism also relies on self-interstitials, but
contrary to the former mechanism here an atom does not jump from interstitial site
to interstitial site until it is eventually incorporated again into the crystal, rather an
interstitial atom pushes one of its neighbours away and occupies its site, with the
pushed-out atom now residing on another interstitial site.

Si and Ge are chemically very similar, therefore the ordering energies in a Si-Ge
compound are very small (below one meV due to de Gironcoli, Giannozzi, and Baroni,
1991). If one also assumes the dynamical behaviour of the constituents in a Si-Ge
solid solution to be equal — which is not necessarily the case due to the affinity of
the vacancies to Ge (Ramanarayanan, Cho, and Clemens, 2003) — the pair-correlation
function becomes equivalent to the self-correlation function as the interaction potential
in Eq. (2.3.15) vanishes. Therefore a coherent scattering method on a Si-Ge sample
measures the same thing as an incoherent method on an elemental sample. Consequently
I will confine myself to the elemental case from now on.

An illustration of the vacancy mechanism is given in Fig. 4.2. As the vacancy migrates
through the crystal the atoms perform nearest-neighbour jumps from one sublattice
to the other (apart from correlation effects as described in Section 3.5). Therefore the
decay of the intermediate scattering function will be given by two exponentials in the
non-degenerate case.

The interstitial mechanism is illustrated in Fig. 4.3. An atom goes to an interstitial site,
performs a large number of jumps, and is eventually incorporated into the crystal again.
This leads to large effective displacements with an approximately isotropic distribution.

For the interstitialcy mechanism note first that just as the crystal is made up of two
sublattices α1 and α2, also the interstitial sites can be classified into two sublattices β1
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Figure 4.2.: The vacancy diffusion mechanism. The grey cube denotes the vacancy.

Figure 4.3.: The interstitial diffusion mechanism. The grey spheres are the interstitial
sites temporarily occupied by the diffusing atom.

and β2. This can be most easily seen by constructing the diamond lattice from the bcc
lattice and leaving out every other bcc cell, because then it is obvious that the interstitial
sites can be obtained by translating the regular sites by half of a cubic translation vector.
Inspecting Fig. 4.4 shows that the nearest-neighbour interstitial sites to an atom sitting
on α2 belong exclusively to β1 and vice versa. This holds also for α1 and β2. Therefore in
the interstitialcy mechanism an atom starting out from one sublattice will always end up
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Figure 4.4.: The interstitialcy diffusion mechanism. The grey spheres are the interstitial
stepping stones occupied by the diffusing atoms.

on this sublattice again, more specifically the effective exchange vectors are the twelve
nearest-neighbour vectors of the face-centred cubic lattice. So even though the diamond
lattice is no Bravais lattice, the intermediate scattering function decays with a single
exponential, because there is no flux between the two sublattices.

Concluding one can expect to be able to comfortably discern between the various mech-
anisms by means of the incoherent (or equivalently coherent) intermediate scattering
functions measured for different positions in reciprocal space: the interstitial mechanism
would show no variations in the decay time as a function of the position in reciprocal
space apart from a parabolic form at very small scattering angles (which would allow to
determine the average length of the effective translations), the interstitialcy mechanism
would have constant intermediate scattering functions (i.e. infinite decay times) at the
Bragg reflections of the face-centred cubic lattice which are forbidden in the diamond
lattice, and the vacancy mechanism would show a two-component decay corresponding
to nearest-neighbour jumps.

4.2. A triple defect system — Ni-rich B2 NiAl

B2 NiAl is a very well-ordered system. This is because for a stoichiometric composition
certain defects are very costly in configuration energy: both a vacancy on the Al-sublattice
and an Al-atom on the Ni-sublattice have an effective formation energy equal to or more
than 2 eV (Meyer and Fähnle, 1999). This excludes thermal Schottky defects or antisite
pairs. The dominant thermal defect therefore consists of three point defects: a Ni- and
an Al-atom leave their position and go to the surface, enlarging the crystal by one unit
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cell, and another Ni-atom fills the resulting vacancy on the Al-sublattice, so effectively
two Ni-vacancies and one Ni-antisite are created. This is called a triple defect, costing a
bit more than 2 eV (Meyer and Fähnle, 1999; Korzhavyi et al., 2000). This scenario also
holds for the Ni-rich side, where the surplus Ni-atoms are accommodated as antisites
on the Al-sublattice. On the Al-rich side the situation looks different, however. As an
Al-antisite is very costly, the ground state has structural vacancies on the Ni-sublattice
instead. Here the dominating thermal defect is the creation of an Al-antisite with the
concomitant annihilation of two vacancies on the Ni-sublattice, an inverse triple defect
of some sort, leading to the counterintuitive feature of decreasing vacancy concentration
with increasing temperature (Meyer and Fähnle, 1999).

This high degree of order with a thermal defect concentration less than 10−3 at tem-
peratures as high as 1300 K (Korzhavyi et al., 2000) imposes severe restrictions on the
dynamics in the system. The vacancy (or more general, the diffusion vehicle) has to
choose its path through the crystal so that the necessary disturbances of the order are
only temporary, it has to restore the order again upon leaving. In the following I will
give examples of such mechanisms for the Ni-rich case and show how these mechanisms
manifest themselves in the coherent and incoherent intermediate scattering functions
obtained by Monte-Carlo simulations.

The fact that the vacancies are preferably located on the Ni-sublattice allows for some
preliminary observations to be made: as soon as enough Ni-antisites are available the
tracer diffusivity of Ni and Al will decouple as this enables the vacancies to move by
nearest-neighbour jumps via the Ni-antisites without disturbing the order. Even without
a significant number of Ni-antisites diffusion of Ni could happen via next-to-nearest-
neighbour jumps, i.e. jumps along an edge of the primitive cubic cell. The activation
energy for such a jump is with a value of about 2.5 eV quite high, but as it induces no
disorder and only needs one vacancy it cannot be excluded a priori (Mishin, Lozovoi,
and Alavi, 2003).

Both of the above processes only lead to Ni diffusion, however. Concerning Al
diffusion two mechanisms have been proposed:

• six-jump cycles (Elcock and McCombie, 1958): a vacancy on the Ni-sublattice
performs one of a number of sequences of six nearest-neighbour jumps, where
the latter three undo the disordering caused by the former three, leading to a
displacement of the vacancy, one Ni-atom, and two Al-atoms.

• the triple-defect mechanism (Stolwijk, van Gend, and Bakker, 1980): this mecha-
nism involves a localized triple defect, that is two Ni-vacancies and one Ni-antisite
next to each other. Concerted nearest-neighbour jumps of the two vacancies lead
to the displacement of two Ni-atoms, one Al-atom, and the defect, incurring only a
low amount of additional disorder during the transition.

In a six-jump cycle the vacancy moves along a path A→ B→ C→ D→ A→ B→ C
connecting nearest neighbours, where A and C are on the Ni-sublattice and B and D
on the Al-sublattice. After the six jumps have been executed the vacancy has moved
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Figure 4.5.: The 〈110〉 variant of the six-jump cycle. Ni is red, Al blue, and the vacancy is
the grey cube. On the left is the initial state, in the middle the intermediate
configuration corresponding to the maximum in energy along the transition
path, on the right the final state.

to the position C, the Ni-atom initially on C is now on A, and the Al-atoms on B and D
have exchanged place. After accounting for cubic symmetry there are three possible
choices of the path: in the so-called 〈110〉 cycle C is at a position 〈110〉 relative to A and B
to D is therefore a vector 〈001〉 (this variant is illustrated in Fig. 4.5), the straight 〈100〉
cycle has A and C displaced by 〈100〉 and B and D by 〈011〉, and the bent 〈100〉 cycle
again has A and C displaced by 〈100〉, but B and D by 〈010〉. Straight and bent refers to
whether the path lies in a plane or not. It is commonly accepted that the 〈110〉 cycle is
the energetically most favoured variant with a saddle point energy slightly smaller than
3 eV (Mishin, Lozovoi, and Alavi, 2003; Marino and Carter, 2008).

It has been stated above that the triple defect is commonly thought to be the dominant
thermal defect in stoichiometric and Ni-rich NiAl. The triple defect mechanism as
illustrated in Fig. 4.6, however, needs the three point defects to be located on neighbouring
sites. At low defect concentrations (as it is the case in NiAl) this obviously lowers the
entropy by a large amount compared to the free case, or equivalently the instances
where the three defects are in a position so as to initiate a move are very rare. Xu and
Van der Ven (2009) give quantitative results where they show that there are favoured
arrangements of the triple defect leading to a higher concentration compared to the
mean-field result (i.e. neglecting interactions), although they still stay rare. Once there is
a localized triple defect, however, its migration energy is only slightly larger than 1 eV.

Figure 4.6.: A triple-defect jump as it is commonly pictured with the initial state on the
left, final state on the right. Note that the actual initial and final position of
the moving vacancy is inconsequential.
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Figure 4.7.: The elementary event of chemical diffusion in the case of diffusion by the
triple-defect mechanism. A triple defect enters the neighbourhood of a
Ni-antisite, the vacancies rearrange, the triple defect formed with the encoun-
tered Ni-antisite leaves, resulting in the apparent translation of the antisite
to a neighbouring Al-site (highlighted).

The question of chemical diffusion necessitates further considerations: In any real
sample the dominant defects will be of structural nature due to the inevitable off-
stoichiometry as opposed to thermal defects. In the Ni-rich case this means that the
number of structural Ni-antisites will be much higher than the number of thermal
vacancies, let alone localized triple defects. The elementary event of chemical diffusion
is therefore the exchange of the occupation of two Al-sites: one Ni-antisite becomes Al,
and one Al becomes a Ni-antisite. Note that it is advisable to think in a sufficiently coarse
temporal resolution: picture a localized triple defect diffusing through the crystal with
a very small off-stoichiometry. After each step the triple defect’s Ni-antisite occupies
a different Al-site, but these are not events of chemical diffusion, because even if one
triple defect makes an arbitrary number of steps, the overwhelmingly larger number
of structural Ni-antisites is not affected. For chemical diffusion to happen, that is for
the arrangement of structural Ni-antisites to change, it is necessary that the triple defect
enters a neighbouring cell of a Ni-antisite, the vacancies change over to the encountered
Ni-antisite forming again a localized triple defect, and that this new triple defect diffuses
away, leaving the Ni-atom the former triple defect brought with it stranded on an Al-site
(see Fig. 4.7). Such a change-over of the vacancies corresponds to the elementary event
of chemical diffusion. An analysis of the possible apparent translation vectors will be
given below.

The existence of structural Ni-antisites in a concentration greater than the concentration
of thermal defects also has an effect on diffusion via the six-jump cycle which apparently
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Figure 4.8.: The 4+2-jump mechanism. The jumps leading to the movement of the defect
are in the upper row, the lower left shows the setting-up for the next jump.

has not yet been treated in the literature: it can lead to what I will call the 4+2-jump
mechanism (pictured in Fig. 4.8). Start with a vacancy which has exactly one Ni-antisite
among its eight nearest neighbours. Let this vacancy initiate a six-jump cycle where the
Ni-antisite is on the position D of the path in the above notation. After the second jump
of the vacancy, however, with an Al- and a Ni-antisite created, the next two jumps of
the vacancy again restore the order. The vacancy can now reach any of the seven other
Ni-neighbours of the Ni-antisite via two nearest-neighbour jumps without producing
disorder. Again it has a Ni-antisite as a nearest neighbour and can therefore start the next
four-jump cycle. Just as in the case of the triple-defect mechanism a more complicated
defect (involving more point defects) enables a diffusion path with a smaller migration
energy, but here the second point defect is not thermal but structural and therefore
available in much greater concentrations: already in Ni51Al49 15% of the vacancies have
at least one Ni-antisite among their nearest neighbours in the mean-field approximation.
Calculations of the migration energies of the 4+2-jumps would be desirable. Chemical
diffusion effected by the 4+2-jump mechanism works analogously as in the case of the
triple-defect mechanism: a vacancy and a Ni-antisite arrive in the neighbourhood of
another Ni-antisite, the vacancy changes over and leaves with the second Ni-antisite.

For the cases of both the triple-defect mechanism and the 4+2-jump mechanism the
elementary event of chemical diffusion is given by a defect’s vacancies deserting the
Ni-antisite they came with and forming a new defect with another Ni-antisite. When this
new defect leaves the vicinity, the Al-site formerly occupied by Ni becomes occupied by
Al. The Al-antisite therefore apparently jumps in the reverse direction the vacancies took.
The flow of the vacancies can already happen when the Ni-antisites’ coordination cubes
share only a corner. It is therefore plausible that the apparent Ni-antisite jumps are along
〈100〉, 〈110〉, and 〈111〉. Correlation effects as in the encounter model (see Section 3.5)
will yield contributions from farther jumps. This makes an analytic calculation of
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the probabilities of the respective jumps infeasible, I will instead present results from
simulations below.

The case presented above was for a small off-stoichiometry: defects diffuse far before
they encounter a Ni-antisite, the vacancies exchange, and the new defect diffuses away.
Once the off-stoichiometry gets larger, however, the Ni-antisites become interconnected.
The relevant percolation threshold is at around 10% of Al-sites occupied by Ni (Divinski
and Larikov, 1997; R. Ziff priv. comm.), that is a Ni-concentration of 55% neglecting
thermal defects. If the diffusing defect now encounters a cluster of Ni-antisites, it can
exit far from where it entered. In the extreme case where practically each Ni-antisite
belongs to an infinite cluster the analysis of the apparent displacements becomes easy:
the vacancy diffuses through the cluster (or the vacancies diffuse independently through
the cluster and meet somewhere in the case of the triple-defect mechanism), it makes
one 4-jump cycle (or a triple-defect jump) and it diffuses away via the Ni-antisites. As a
consequence in this case the apparent displacements are equal to the actual displacements
of the Ni-atoms, i.e. 〈100〉-jumps as is commonly accepted.

Monte-Carlo simulations show that above considerations are qualitatively correct: the
relative weights of exchanges into the first seven shells of Al-sites are given in Fig. 4.9 as
a function of Ni-concentration x for both processes, where the shells four to seven are
combined for simplicity. Further jumps can be neglected. The simulations used a box of
32× 32× 32 B2-cells. They were run in the limit of low temperature (as is appropriate for
NiAl): there were no thermal defects apart from either one or two vacancies (depending
on the mechanism). Energetical interactions between the defects were not considered,
i.e. no short-range order was present. The vacancies could either make nearest-neighbour
jumps onto sites occupied by Ni or perform the correlated jump sequence (if allowed
by the configuration of the vacancies in the case of the triple-defect mechanism). For
the triple-defect mechanism the attempt frequency for a valid nearest-neighbour jump
sequence via a Ni-antisite was more probable than for a valid correlated jump by a factor
of 100, for the 4+2-jump mechanism by a factor of 1000. This does not mean that there
were 100 antisite jumps per triple-defect jump, rather there were much more, as for higher
x the vacancies were only very rarely in a configuration allowing a correlated jump,
being dispersed over a cluster. This was the reason why the triple-defect mechanism
was simulated only up to a Ni-concentration of x = 55%, higher x would need much
more CPU time. For the 4+2-jump mechanism, however, the ratio of performed jumps is
in first order equal to the ratio of attempt frequencies.

The results in Fig. 4.9 show that the weights of the apparent exchanges into the first
three shells are of the same order of magnitude for small off-stoichiometry, but exchanges
into further shells also contribute. For Ni-concentrations x larger than 55%, where more
and more Ni-antisites belong to an infinite cluster, the exchange along 〈100〉 dominates.
They also show that the two mechanisms do not significantly differ in the weights of
the apparent displacements. This becomes easily understandable if one considers the
defect as an abstract entity irrespective of its actual configuration. Both the triple defect
and the bound vacancy-antisite pair of the 4+2-jump mechanism contain one Ni-antisite.
Let the position of the abstract defect on the lattice be given by the B2-cell in which the
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Figure 4.9.: Weights of the apparent exchange vectors of chemical diffusion for the triple-
defect mechanism (left) and the 4+2-jump mechanism (right) as a function of
Ni-concentration x: 〈100〉 is red, 〈110〉 green, 〈111〉 blue, and farther jumps
pink.

Ni-antisite is located. The defect can move along 〈100〉-directions by a correlated jump
sequence, displacing one Al-atom in the opposite direction. If one of the 26 Al-sites
next to the defect is occupied by a structural Ni-antisite, the defect can migrate to this
position by nearest-neighbour jumps of Ni. If the probability for this migration over
Ni-antisites is much higher than for the jump sequences (as will be the case due to both
energy and entropy) each position in the cluster of Ni-antisites will be equally probable
as a starting point for the next correlated jump sequence. In this abstract description the
actual configuration of the defect was not mentioned, so they are equivalent from the
point of chemical diffusion. Needless to say, energetical interactions between the point
defects would disturb the equivalence.

Even though the two mechanisms do not differ in the chemical diffusion they promote
(i.e. the pair-correlation of the system), the self-correlation is distinct. Fig. 4.10 shows the
tracer diffusivities normalized by the chemical diffusion constant for both constituents
and both mechanisms. The diffusivity of Al is very similar for both processes, which
can be understood by an argumentation as in the last paragraph. Ni, on the other
hand, diffuses much faster under the triple-defect mechanism than under the 4+2-jump
mechanism. This is mostly due to the fact that the two vacancies will shuffle the seven
Ni-atoms touching the cube of the triple defect very effectively by a succession of
two nearest-neighbour jumps as pictured in the right top panel of Fig. 4.7. Once the
percolation threshold at x = 0.55 is reached the diffusivity of Ni is bounded only by
the size of the simulation box due to the calculation of the self-correlation function as
implemented here.

Concluding it seems that it is impossible to decide between diffusion mechanisms
by a coherent scattering experiment alone. Combining such measurements with a
determination of the tracer diffusivities or comparing the vacancy concentration as a
function of composition with the measured chemical diffusivities should allow to decide,
however.
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Figure 4.10.: Tracer diffusivities of Ni (red) and Al (blue) for both the 4+2-jump mecha-
nism (solid lines) and the triple-defect mechanism (dashed lines) normalized
by the chemical diffusion constant.

4.3. A short-range ordered system — Cu90Au10

Cu-Au is a classical system in metal physics. For one it exhibits the prototypical examples
of the L10- and the L12-lattices with CuAu and Cu3Au, respectively, it has provided the
inspiration for the Bragg-Williams model of long-range order (Bragg and Williams, 1934)
and its refinement by Shockley (1938) to include nearest-neighbour interactions, thereby
laying the groundwork for the treatment of disorder in alloys as it is nowadays done by
cluster expansion, and also the quantitative description of short-range order by Cowley
(1950) was introduced for measurements on this system, to name just a few fundamental
contributions to physics.

The aspect I want to treat here is the influence of the short-range order on the atomistic
dynamics. Due to Massalski (1986) the solubility of Au in Cu exceeds 10 at.% for all
temperatures where equilibration is experimentally feasible, but the proximity of the
L12-phase of Cu3Au at low temperatures suggests the emergence of short-range order.
This is proven by the experimental investigations of Schönfeld et al. (1999): in Cu90Au10
at 573 K short-range order, but no long-range order is found. Specifically the probability
for a given nearest-neighbour site of a Au atom to be occupied by Au is only 2% compared
to the mean-field value of 10%, the probability for a 〈100〉-Au neighbour is 17% on the
other hand. Correlations over longer ranges are already very weak. As expected, these
deviations from the mean-field value correspond qualitatively to the occupations in the
L12-phase.

As the Cu-Au alloy is a close-packed metal, the diffusion mechanism will be ordinary
nearest-neighbour jumps into vacancies. The influence of short-range order on the coher-
ent intermediate scattering function was treated in Section 2.3 in the high-temperature
limit. In order to explore the range over which the high-temperature limit is applicable
and to qualitatively investigate what happens outside this range I conducted simulations.

The stochastic simulation of the trajectory of a system through configuration space
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is commonly known as Monte-Carlo simulation. The necessary ingredients for such
a simulation are an initial configuration and a rule specifying the transition rates for
the system to change from one configuration to the next. For simulations on a discrete
timescale these rates can equivalently be given as the transition probabilities per unit time.
When simulating static equilibrium properties the only requirement on the transition
rates is that they fulfil detailed balance, in fact this is also a sufficient requirement for the
system to converge to thermodynamic equilibrium provided the configuration space
does not decompose into unconnected domains. Among the abundance of rules the
Metropolis rule (Metropolis et al., 1953) is the most popular. For the simulation of
dynamics, however, the set of possible transitions and their respective probabilities
should mirror the physical model. When simulating vacancy diffusion, for example, one
would only allow nearest-neighbour jumps of the vacancies. The transition probabilities
are in most investigations given by the energetical difference of initial and final state via
the Metropolis or Glauber (Glauber, 1963) rule. From classical transition state theory
it follows, however, that the energy difference between the initial state and the saddle
point of the transition path in the energy landscape governs the transition probabilities
via the Boltzmann factor (as in Section 2.3), with an additional contribution from the fact
whether the saddle point in the energy landscape is wide or narrow.

The Monte-Carlo simulations to be reported in the following were done with two
choices for the transition probabilities: Denote the energies of the initial state and the
final state with Ei and E f , respectively. The probability for transition from the initial to
the final state within the unit time interval is then proportional to e−∆E/kBT, where ∆E
is the difference of the energy of the saddle point configuration and the energy of the
initial configuration Ei, given by

• the Metropolis rule: ∆E = E0 + max(E f − Ei, 0) or

• the midpoint rule: ∆E = E0 + (E f − Ei)/2.

An illustration of the energy landscapes along the path of the vacancy corresponding to
these rules for given energies of the stable positions is shown in Fig. 4.11. Note that a rule
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Figure 4.11.: Sketch of the energy landscape corresponding to the Metropolis rule (red)
and the midpoint rule (blue).
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yielding the Glauber probabilities from the Boltzmann factor of a saddle point energy
cannot be devised as this energy would have to be temperature-dependent, in fact the
Glauber probabilities converge to the Metropolis probabilities for low temperatures and
to the midpoint probabilities for high temperatures.

The simulations were done for an Ising model inspired by the short-range ordered
solid solution Cu90Au10 as investigated by Schönfeld et al. (1999): the system was a
face-centred cubic lattice occupied by 90% A-particles and 10% B-particles and one
vacancy. Interactions between the particles were considered for the first two shells, with
the respective effective interaction energies J and −0.256J (this corresponds to the ratio
between the experimental values of V110 and V200), the vacancy was not considered to
interact.

The resulting fitted decay times of the coherent intermediate scattering function are
given in Fig. 4.12. For a temperature of kBT = 2J the decays could be well described
by exponential decays and the approximations of Section 2.3 seem to hold: the sim-
ulations with the two transition rules agree very well with each other and with the
value predicted by Eq. (2.3.21). At a temperature of kBT = J (with the energies of
Cu90Au10 this corresponds to 530 K) short-range order is much stronger (visible in the
more pronounced features of τ(q)), the decay shows deviations from a single exponential
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Figure 4.12.: Correlation time τ as a function of q for the Metropolis rule (red), midpoint
rule (blue), and theoretical expression (green). Upper panel for medium
temperature, lower panel for low temperature. Path through reciprocal
space on the Brillouin zone of the face-centred cubic lattice on the right.
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(not shown), and when fitting with a single exponential the fitted decay times display
systematic deviations both from the theoretical value and between the two models.
This demonstrates that the pair-correlation function (and equivalently the coherent
intermediate scattering function) of a short-range ordered system is sensitive to the
relationship between the local atomic configuration and the transition frequencies. Here
the saddle-point energies (and therefore the transition frequencies) were modelled only as
a function of the energy of the initial and the final configuration, but there are endeavours
to calculate these energies from first principles for arbitrary local neighbourhoods of the
jumping atoms (e.g. Ramanarayanan, Cho, and Clemens, 2003). As much as so-called
ab-initio computations are accepted today, in the majority of these investigations the
energy of stable (or even ground-state) configurations is the quantity of interest. Such
quantities can also be verified conveniently in the experiment. Configurations along the
jump path, however, cannot be examined by static experimental methods, as a given
atom is only a negligible amount of time involved in a jump. Measurements of the
coherent intermediate scattering function therefore seem to be the only possibility for
experimentally verifying such calculations. This is not an irrelevant point as algorithms
(or pseudopotentials) accepted to work for stable configurations a priori need not work
for configurations far from the energetical minimum.

4.4. A model of an amorphous system

Up to here this thesis dealt with diffusion in crystalline systems. Now I want to go
beyond these limits and consider diffusion in amorphous media. This is a really bustling
field, especially in the XPCS-community, where the vast majority of publications report
experiments on soft condensed matter (mostly gels or colloidal glasses). This is probably
due to the fact that these systems scatter strongly in the small-angle regime, allowing
such experiments to be performed without much effort. It has been proposed (and it
is now widely accepted) that the dynamics observed in all these systems conform to a
universal principle (Cipelletti et al., 2003b), which has been termed “jamming” (Liu and
Nagel, 1998).

The other main direction of approach to this problem is via computer simulations.
There is a number of works which simulate a glass-forming system with various choices
of the underlying dynamics (Kob and Andersen, 1995a; Berthier and Kob, 2007). Mostly
these are model systems with Lennard-Jones-potentials or, even simpler, hard-sphere
potentials. The results from these simulations is by default presented in terms of the
incoherent intermediate scattering function. This is motivated by the claim that in a
colloidal glass with a polydispersity in the refractive indices of the particles it is in
principle possible to study the incoherent intermediate scattering function by (X)PCS.
This can be achieved by choosing the refractive index of the medium equal to the mean
refractive index of the particles, with an argumentation as in Section 3.4 the coherent
scattering cross section of the particles is then equal to zero. I think another reason for
only considering the self-correlations is that it is much harder to obtain good statistics
for the coherent intermediate scattering function than for the incoherent intermediate
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scattering function. For a metallic glass, which I will treat in Section 7.4, there is no
medium allowing to tune its refractive index, which necessitates a description via the
coherent intermediate scattering function.

In order to obtain the coherent intermediate scattering function I conducted simulations
on a model system. I used the binary mixture of hard spheres proposed by Brambilla
et al. (2009) with 1024 particles and periodic boundary conditions. In order to prevent
crystallization the particles have different sizes, one half has a radius a factor of 1.4
larger than the other half. The system evolves by Monte-Carlo algorithm invented by
Metropolis et al. (1953) and revived by Berthier and Kob (2007), but contrary to these
works I use isotropic dynamics by drawing the particle displacements from a sphere
as opposed to a cube. The invariance of the position of the centre of mass is enforced.
The resulting coherent intermediate scattering function (assigning the same scattering
cross section to both kinds of particles) evaluated in the structure peak with a volume
fill factor of 0.59 is given in Fig. 4.13. The timescale is given in Monte-Carlo steps, where
one MCstep means 1024 attempted particle moves (on average each particle has the
possibility to move once).

From this figure it seems that the late stages of relaxation can be well fitted by an
exponential decay; if one wanted to fit the relaxations on a wider range of timescales
one would have to use the form of a stretched exponential. This is also plausible, as the
superposition of independent relaxations on different timescales (each given by a proper
exponential) leads naturally to a stretched exponential. The quantitative evaluation
of Kob and Andersen (1995b) gives stretching parameters γ on the order of 0.8. No
indication for compressed exponential decays can be inferred from the simulations
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Figure 4.13.: Coherent intermediate scattering function in the structure peak (solid red).
For reference also compressed exponential decays exp(−(∆t/τ)γ) are given,
with γ = 1 (dashed blue) and γ = 2 (dotted green).
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presented here or from most other works, only recently such decays seem to have been
observed when doing simulations with many-body potentials (Del Gado and Kob, 2007;
Saw et al., 2009).

Resuming the review of directions of research into amorphous media, it has to be
stated that besides the great amount of experimental work and computer simulations the
theoretical treatments seem to be lacking. I am not aware of a fundamental explanation of
the fact that upon entering the jamming regime the correlation functions start to display
a form which is commonly fitted with compressed exponentials (Falus et al., 2006). The
fact that such compressed exponentials are commonly encountered in experiments on
diverse systems and never in simulations can give an indication, however. There are
two main differences between experiments and simulations: The first is the question
of accessible timescales. In a metallic glass a particle explores its cage formed by the
neighbouring particles within on the order of 10−12 s (the inverse of the Debye frequency),
whereas it leaves this cage after about 103 s. In Fig. 4.13 it can be seen that the particles
move on atomic distances with a timescale of about 107 MCsteps, whereas the initial
decay (not shown) happens at about 10 MCsteps. The simulations presented here are in
this aspect the state of the art (the accessible timescales), see for example Berthier and
Kob (2007). The other difference is the spatial scale: While simulations are restricted to
a few thousand particles, in reality systems are much larger. It is standard procedure
in publications to claim that finite size effects are found to be negligible by comparing
the results from simulations using systems of differing sizes. It has been proposed,
however, that the universal dynamics in jamming systems are due to relaxations on all
lengthscales, leading to so-called heterogeneous dynamics (Cipelletti et al., 2003a). This
is plausible, since independent localized relaxations without memory lead immediately
to an exponential or even stretched exponential decay in time, but can never cause
compressed exponentials. It is obviously not possible to simulate such processes in the
foreseeable future with the present models, where each particle is treated explicitly.
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5. Data evaluation

This chapter describes the steps taken in evaluating the data obtained in an XPCS
measurement. It aims to be both methodologically thorough and helpful to the reader in
reproducing the work presented here, it will therefore be very detailed.

The principal problem is the following: the scattered X-rays are detected with a
charge-coupled device (CCD), where one detected photon generates a droplet of charge
in a small number of adjacent pixels, for this process see for instance Miyata et al. (2003).
Additional charge is generated over time due to leakage current. This chapter describes
how to first detect as exactly as possible where each photon hit the chip, and second
how to compute the auto-correlation functions from these data.

Data evaluation is done via a suite of command-line programs written in C. The
parameters are specified via a common parameter file. The programs are: evaluatedark
for computing the dark current, hist for computing histograms of the ADUs in a
droplet, evaluatedroplets for converting droplets of generated charge to single photon
events, and computeacf and computettacf for computing the ordinary auto-correlation
function and the two-time auto-correlation function, respectively. The workings of these
programs are described below. They are available on request.

5.1. Raw data files

In an XPCS experiment one measures the number of X-ray photons scattered into a given
direction as a function of time. The time resolution needed is dictated by the dynamics
in the sample. For optimal statistical accuracy one would in principle want the data of
as many equivalent directions as possible, corresponding to many detectors. This leads
to a trade-off between many equivalent directions and good temporal resolution: A fast
read-out implies a low number of pixels both because of data transfer limitations and
because of the fact that fast detectors (such as avalanche photodiodes) are much more
complicated and therefore bigger than pixels on a CCD, which are rather slow. For this
thesis scattering in the diffuse regime was investigated, entailing the need for a large
number of pixels, which can only be obtained with a CCD.

The raw data for a given measurement run consist of a sequence of frames, which
means that the electric charge built up in the distinct pixels on the camera’s chip is read
out every few seconds and stored in a sequence of files. With an exposure time on the
order of 10 s and a read-out time of about 1 s a run corresponds to about 500–1000 frames.
Contemporary CCD-cameras have on the order of 1000 × 1000 pixels. Multiplying these
numbers shows that a measurement run can easily lead to several GBs of data.

The CCD-cameras used within the scope of this thesis were
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• a Princeton Instruments PI-LCX: 1300 courtesy of Gerhard Grübel’s group at
HASYLAB, Hamburg. This camera has 1340 × 1300 pixels with a pixel size of
20 × 20µm2.

• an Andor iKon-M camera provided by the beamline ID10A at the ESRF itself. It
has 1024 × 1024 pixels with a pixel size of 13 × 13µm2.

These cameras were either controlled via Roper Scientific’s WinView program or
directly via spec, the software operating the beamline. Depending on the program used
for controlling the camera the data files use different formats:

• If controlled by spec, the data files use the .edf-format. This stands for ESRF Data
Format. It has an ASCII-header of 1024 bytes giving details about the data, after
which the data are stored by the number of ADU (analog-to-digital units) for each
pixel, formatted in the machine’s native unsigned two-byte integer format.

• If controlled by WinView, the data files use the .spe-format. Here the header
length is 4100 bytes and it is not human-readable, after that the data are saved as
with .edf-files.

Principally the two formats are equivalent if one does not read out the header: after
accounting for the different header lengths the same procedures can be used for reading
the data. The version of WinView used for the experiments, however, normally would
not write the frames immediately after reading out the camera, it would rather read all
the data into the memory and only write it to the hard disk after the measurement run is
finished. This is unacceptable due to memory restrictions and the possibility of crashes,

Figure 5.1.: Detail of a weakly illuminated frame.
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fortunately Lorenz-Mathias Stadler succeeded after consulting the manufacturers in
installing a patch and writing a macro to allow the immediate write-out.

The principle of a CCD-camera is that the incident photons excite electrons via the
inner photoelectric effect, these electrons are then read out and counted. For XPCS
direct-illumination CCDs are used, this means that the X-ray photons fall directly onto
the chip as opposed to being converted to optical photons via a phosphor screen. Charge
leakage, however, leads to the so-called dark current, i.e. a charge is accumulated in the
pixels and read out even in the absence of impinged X-ray photons.

Fig. 5.1 shows a 100×100 detail of a frame taken with the Andor CCD in a pseudo-color
display. The droplets of charge corresponding to single detected photons are clearly
discernible, only in the upper right corner there are two very bright pixels where several
photons have impinged. This is a frame fulfilling the criterion of weak illumination,
i.e. most of the pixels have no photon impinged onto them.

5.2. Subtracting the dark current

For detecting photons in the generated charge in the CCD-chip first the background has
to be subtracted. Conventionally a number of dark frames (i.e. frames taken with closed
shutter) is taken, the average of which is saved as the dark file and subtracted from each
illuminated frame.

This thesis deals with diffuse scattered intensity, however, which leads to the data
frames being only weakly illuminated, therefore most of the pixels in a frame measure
only dark current also during the measurement. This fact was used for obviating the
need for dark frames by obtaining the background from the illuminated files: A number
of frames are read into memory, the number is chosen with respect to the amount of
memory available. Then for each pixel the median of the ADUs in this pixel over all
loaded frames is determined and the histogram of the ADUs in this pixel, centred on the
median, is computed, with one bin for each discrete value of ADUs. The number of bins
in this histogram needs to be only on the order of the standard deviation of the dark
current in this pixel, which is estimated first and can be ascertained and, if necessary,
adjusted afterwards. Two additional bins hold the values too high or too low to be
added to the histogram. Then the frames left (if there are any) are read and added to the
histograms. Finally for each pixel the highest and lowest N values are discarded and
the mean value and the standard deviation of the rest is computed, where N is a value
chosen beforehand. A sensible choice for N would be about 15% of the overall number
of frames. If this recipe is not possible because the number in either the “too low”- or
the “too high”-bin is greater than N, N is increased only for this pixel, but for sensible
choices of N this can only happen if the pixel is malfunctioning. The mean values
and standard deviations are written to darkmean.bin and darkstd.bin, respectively, in
single precision 4-byte floating-point format, such that they can be viewed conveniently
via fit2d, ESRF’s standard 2d-file viewer.

The rationale for neglecting the highest N values is that the value for the dark current
should not be influenced by the charges due to X-rays, the lowest N values are neglected
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Figure 5.2.: Dark files for both the Andor CCD (above) and the PI CCD (below), in each
case mean values (left) and standard deviations (right). The pseudo-colors
are autoscaled, for values see text.

for symmetry. As only a small number of pixels actually has additional charge, the bias
towards too high mean values should be small with this course of action.

Dark files for both cameras are given in Fig. 5.2. Both CCDs were very new and
therefore in very good condition with no destroyed pixels, but in previous small-angle
scattering experiments they obviously had already been over-exposed, resulting in local
damages to the silicon chip and therefore increased dark current. This is per se not a
problem, as the dark current is subtracted anyway, but in the case of the PI CCD also the
variance of the dark current is locally increased.

The homogeneous dark-red area of the panel pertaining to the Andor’s mean dark
values corresponds to 3436 ADUs, with a pixel-to-pixel standard deviation of these
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mean values of only 0.7 ADUs. The discernible arc at the very top (probably due to
the fabrication of the chip) is 3 ADUs less. The standard deviations of the dark current
in a pixel from frame to frame after removing the highest and lowest values (Fig. 5.2
right top) is 5.5 ADUs with no significant pixel-to-pixel variations, apart from the barely
discernible arc, there it is 5.4 ADUs. These values for the PI chip are a mean value of
319 ADUs with a pixel-to-pixel variation of 5 ADUs, the values in the central ring are on
the average 367 ADUs. The standard deviations are 3.6 ADUs, in the ring 4.4 ADUs.
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Figure 5.3.: Distribution of the deviations of the actual ADU values from the mean for the
Andor CCD, fitted by a Gaussian distribution. The histogram is computed
with bins from −40 to 40 ADUs, values outside of this interval are assigned
to the extreme bins.

Fig. 5.3 shows the distribution of the actual read-out ADU values relative to the mean
computed as stated above. Apart from the about 3% of pixels which have more than
40 ADUs additional charge due to detected X-rays, the distribution is Gaussian, with
a fitted width of 8.9 ADUs and a centre of −0.5 ADUs. The width is higher than the
above-quoted 5.5 ADUs because the tails are not cut here (apart from the 3% due to
X-rays), and the discrepancy in the mean is due to asymmetry induced by the detected
X-rays. These −0.5 ADUs per pixel are a systematic error introduced with this method of
computing the dark current, but with a photon corresponding to about 2000 ADUs as
shown in the next section, it is made up for by the advantages of this method (a very
good statistical accuracy without having to spend time taking dark frames).

The leakage current is not absolutely constant over the duration of a measurement,
for example for the measurement evaluated above it rose by about 2 ADUs over the
measurement duration of 2 hours. This is most probably due to drifts in the temperature
of the CCD chip. The programs can take such drifts into account by modifying the dark
values dynamically, but a drift of 2 ADUs is not relevant given the amount of charge
generated by an X-ray photon, so this feature was turned off.

51



5.3. Histogram of the droplet charges

At certain times it is desirable to generate a histogram of the droplet charge distribution.
This includes the start of the experiment (for learning the characteristics of the camera)
and after changing the sample or the set-up (in order to check for fluorescence coming
from the sample or from the primary beam hitting parts of the equipment).

From Fig. 5.1 it is obvious that the droplets have a variety of shapes: This is due to the
fact that the photoelectric absorption of a photon generates a cloud of charges on the
chip, which can be assumed Gaussian and whose width is on the order of the CCD’s
pixel size (see Miyata et al., 2003). Depending on the centre of the charge cloud relative
to the pixel boundaries, this can lead to a droplet comprising only one pixel (when the
centre of the charge cloud is near the centre of a pixel), two pixels (when the charge cloud
intersects the boundary between pixels along one dimension), or four pixels (when the
centre of the charge cloud is near a pixel corner). In the last case the fourth pixel’s charge
can be lost in the fluctuations of the dark current if it is very weak, leading to three-pixel
droplets. Apart from these single-photon droplets a small fraction of droplets comes
from overlapping charge clouds, leading to larger droplets of arbitrary shape.

In the scope of this thesis droplets were treated in a model-free approach: a droplet is
defined as a connected set of pixels (where the neighbours of a given pixel are the four
nearest neighbours in the square lattice), each with a charge significantly above the mean
dark current of the respective pixels. This is implemented in hist and evaluatedroplets
in the following way: The programs use a data frame, a logical array of the same size
as the data frame initialized to false, and a stack which is initially empty. First the
dark file is subtracted from the data frame. Then the pixels are gone through and tested
one after the other if both their logical state is false and if the value in the pixel is
significantly higher than zero. If this is the case, a counter is initialized to zero, the pixel’s
logical state is set to true, and its index is pushed into the previously empty stack. Then
the operation turns to the stack: the uppermost index is taken and the corresponding
pixel’s value is added to the counter. Then the four neighbours of the pixel are tested
sequentially on their logical state and their value as before, and for a positive result their
state is set to true and their index pushed into the stack. Then the next index is popped
from the stack, until the stack is empty. The value in the counter is then the sum of the
values of the pixels in the droplet and the function returns to the loop over the frame’s
pixels.

Fig. 5.4 shows histograms of droplet charges calculated for the Andor and the PI chips.
The peaks corresponding to an integral number of elastically scattered photons are clearly
discernible. The plots with the linear scale show that the majority of droplets correspond
to one photon. The number of ADUs per photon (the position of the one-photon peak) for
the Andor CCD is 1955, for the PI CCD it is 1018. Even though the ratio of the variations
of the dark current to the charge per photon is approximately the same for both chips, the
spectrum detected by the Andor CCD shows far more details than the spectrum of the
PI chip. This difference is most likely due to the architecture of the chip, probably the PI
CCD is not so efficient in collecting all the generated charges if the photon was absorbed
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Figure 5.4.: Histograms of droplets for both the Andor CCD (above) and the PI CCD
(below), in each case on a logarithmic (left) and a linear scale (right). Bin
width is 10 ADUs, incident photon energy 8 keV.

deep in the chip. The features visible in the Andor’s spectrum can principally come from
two distinct processes: on the one hand they can be fluorescence lines from elements in
the sample or in the furnace, on the other hand they can be so-called escape peaks, when
the energy of a photon is not completely transferred to electronic excitations in the chip,
but instead a silicon atom is excited and a fluorescence photon is emitted. The following
table gives the positions and the estimated weights relative to the main elastic line at
8.0 keV with the processes possibly responsible for them. The X-ray energies are taken
from the X-ray data booklet (Thompson et al., 2001).

Position (keV) weight (relative) Possible source
8.0 1 one-photon elastic line
6.42 0.083 FeKα (6.40 keV), MnKβ (6.49 keV),

SiKα-escape ((8.0 − 1.74) keV)
5.91 0.057 MnKα (5.90 keV)
7.10 0.012 FeKβ (7.06 keV)
2.91 0.0071 ?
1.73 0.0035 SiKα (1.74 keV)
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Now also the limits for considering a droplet as pertaining to a single elastically
scattered photon can be set. The linear plots in Fig. 5.4 show that for the Andor CCD the
limits can safely be set to 1800 and 2100 ADUs. For the PI CCD this decision is not so
clear, here the limits were set to 920 and 1110 ADUs.

5.4. Detecting photon events

The next step in evaluating the data is extracting the positions of the absorbed photons
from the frames with evaluatedroplets. The droplets are detected and evaluated with
the same algorithm as in the previous section, but now not only the sum of the pixels’
ADUs is computed, but also the moments in both x- and y-direction. Only the droplets
with a number of ADUs within the limits set for a single elastically scattered photon
are further considered, the reason is that contrary to the claims of Livet et al. (2000) it is
not so trivial to determine the exact positions of the incidence of single photons within
a multi-photon droplet. Not considering these photons is conservative as it can only
decrease the contrast, also only a very small number of photons is lost in this way, see
Fig. 5.4. This also does away with the occasional cosmic ray, see Fig. 5.5.

The x- and y-moments of the one-photon droplets are sequentially written to memory,
simultaneously an array of the summed counts for each pixel over the whole measure-

Figure 5.5.: Path of a cosmic ray.
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ment (i.e. the moments of the droplets are rounded to integers and assigned to a pixel)
and a vector of the number of photons for each frame is generated. Using the array of
the summed photons per pixel the data are rearranged so that they are described by the
frame numbers when photons were detected in a given pixel. These numbers are written
to data.bin, sequentially for all pixels, the fractional parts of the moments are written to
datafrac.bin. Finally the array of the summed photons is written to summedframes.bin
as binary short integers (can be viewed in fit2d) and the vector of the photons per frame
is written to timeseries.bin as binary integers and to timeseries.txt in ASCII-form
(for plotting).

When evaluating a measurement run generally the first thing is to compute the dark
file, then evaluatedroplets is run. For doing that it is advisable to read in the frames
starting from the last one in order to exploit caching, which is done both by the hard-disk
and by the operating system. This considerably speeds up the process, particularly if the
data are on an external hard-disk with the concomitant low transfer rates.

5.5. Computing the auto-correlation function

After having detected the photons the auto-correlation function can be computed. This is
done by the program computeacf. The real situation at a synchrotron is more complicated
than as was considered in Section 3.6, however: in general the intensity of the incoming
beam is not constant, because first the ring current decays between the refills1 and second
the position of the beam moves over the slits on the timescale of hours. Neglecting to
consider these effects would result in the auto-correlation function’s being dominated
by the fluctuations of the incident radiation as opposed to measuring the fluctuations
coming from the sample. Fortunately the number of pixels on the detector is large, so
the intensity in a pixel at a given time can be normalized by the instantaneous expected
value of the intensity, given by the average intensity of all pixels at this time. Such an
approach is valid because the expected value of the auto-correlation function at non-zero
time delay is not affected by quantization as was shown in Section 3.6.

Thanks to the rearranging described above the computation can be done very efficiently.
If the times when a photon was detected in a given pixel are denoted by t1 . . . tM and the
number of photons in frame i by Ni for all i, then the auto-correlation function is obtained
by iterating over all 1 ≤ i < j ≤M and adding 1/(NtiNt j) to the entry corresponding to
the value of the auto-correlation function for the time delay t j − ti. This is iterated for all
pixels. The entry corresponding to the time delay ∆t is then multiplied by (T − ∆t)/K
where T is the number of frames and K the number of pixels, and the resulting values
are written to a text file.

The two-time auto-correlation function, which is defined in analogy to Eq. (3.6.2) but

1Modern synchrotrons starting with the APS operate in the so-called top-up mode, meaning that the
refilling of the electrons happens practically continuously. This is also planned to be implemented with
the ESRF upgrade.
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without averaging over absolute time

g(2)(q, t1, t2) =
〈I(q, t1)I(q, t2)〉
〈I(q, .)〉2 , (5.5.1)

can be computed equivalently by adding up the entries of a matrix describing absolute
times as opposed to a vector describing time delays. The results are written to a file as
4-byte floats suitable for viewing by fit2d. This thesis deals with equilibrium dynamics,
so the two-time auto-correlation function was only evaluated qualitatively in order
to ensure that the sample was truly in equilibrium. Also sudden correlation losses
can happen, probably due to instabilities of the set-up, an example of which is given
in Fig. 5.6: homogeneous dynamics should give a band of constant width along the
diagonal.

Figure 5.6.: Two-time auto-correlation function of 262 frames in pseudo-color display,
smoothed by a Gaussian kernel with a width of 3 frames. The left top
corresponds to (t1 = 0, t2 = 0), the colour of the off-diagonal areas to a value
of 1 (i.e. no correlation), the average yellow of the diagonal to 1.13 (i.e. a
contrast of 0.13).

Contrary to what one would naı̈vely think, the fact that the charges generated by a
photon are in most cases distributed over a number of pixels (described by the so-called
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point-spread function) is not undesirable because it potentially gives sub-pixel resolution
as demonstrated by Miyata et al. (2002). Unfortunately, the relation between the centre
of the cloud of charges generated by the photon and the moments in x- and y-direction
of the ADUs in the droplet is a nonlinear function, which depends on the width of
the charge cloud and the pixel size. The width of the charge cloud is given by the
distances the charges had to diffuse to the electrode (Miyata et al., 2003), and it therefore
depends on how deep within the chip the photon was absorbed. This depth is a random
variable for each photon, so it is principally not possible to assign the exact position of
detection to each droplet. A rough estimate on the position within the pixel, that means
an assignment to logical sub-pixels, can be made, however. Back-illuminated CCDs with
their longer diffusion length, therefore larger charge cloud and in turn less severe effects
of discretization would be highly desirable for these kind of experiments.

In the course of this thesis the fractional parts of the moments in datafrac.bin were
considered in three ways:

• The straight-forward way: The logical pixels used in the algorithm above are
identical to the physical pixels of the CCD. The fractional parts of the moments are
consequently not considered at all.

• More involved but still conservative: The grid of the logical pixels is translated
relative to the physical pixels by a small amount and the results are averaged over
a number of such translations.

• The optimistic way: The photons in a physical pixel are reclassified into several
logical sub-pixels.

The first approach was taken for the experiments with the PI CCD, first because the
more intricate algorithms hadn’t been implemented then, second due to the poorer
performance as visible in the histograms trying to achieve sub-pixel resolution did not
seem so promising for this CCD.

The second approach was implemented in the following way: a histogram of the
fractional parts of the moments in the x-dimension p(∆x) was prepared, the centre of this
distribution ∆x0 was computed via the complex angle of its first Fourier component, and
∆x−1 and ∆x+1 were chosen such that both the integrals over [∆x−1,∆x0] and [∆x0,∆x1]
were equal to 0.25. The same was done for the y-dimension, and the translations
used for averaging were the four possible choices of (∆x±1,∆y±1), see Fig. 5.7. As
the classification with respect to these values ∆xi and ∆yi should not be much worse
than the straight-forward classification (i.e. with a splitting fractional value of 0.5),
the obtained auto-correlation function should have the same statistical accuracy and
essentially the same contrast. However, averaging over the four distinct translations
improves the statistical accuracy of the result: disregarding the denominator the value
of the auto-correlation function is given by the number of incidences N when in the
same logical pixel photons were detected with a given time delay. Inspecting Fig. 5.7 it
can be seen that if both photons were detected in the same quarter-subpixel then they
are counted in all four translations; if they were in neighbouring subpixel, then in two
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Figure 5.7.: Illustration of the splitting into subpixel. The physical pixel is dashed, the
four distinct translations (displaced by a small amount for visual clarity)
defining the logical pixels are solid.

translations; and if their subpixels only share a corner, then they are counted only in
one translation. The entry in the auto-correlation function after averaging N is therefore
given by

N =
1
16

(
4N00 + 2N01 + 2N01̄ + 2N10 + 2N1̄0 + N11 + N11̄ + N1̄1 + N1̄1̄

)
(5.5.2)

where N00 is the number of incidences in the same subpixel, N10 the number of incidences
with the second photon in the right neighbouring subpixel of the first and so on. For
exclusively Poisson noise (i.e. for low contrast) these numbers are uncorrelated and they
have the same variance v, so the variance of N is given by

V(N) =
v

162

(
16 + 4 · 4 + 4 · 1

)
=

9v
64
. (5.5.3)

Calculating the auto-correlation function with only one choice of logical pixels would
correspond to

N′ =
1
4

(
N00 + N01 + N10 + N11

)
(5.5.4)

with a variance
V(N′) =

v
4
. (5.5.5)

The ratio of V(N)/V(N′) is therefore 9/16 which shows that using this approach lowers
the standard deviations of the auto-correlation function in the ideal case by a factor of
0.75 with respect to the straight-forward approach.
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For the third approach the quarter-subpixels are directly used as logical pixels. Con-
ducting an experiment with half the detector distance would then give the same situation
as using the physical pixels with the original distance (provided the count rate is low
enough, i.e. the single droplets can still be resolved), but with the fourfold number of log-
ical pixels, thereby lowering the standard deviations of the points of the auto-correlation
function by a factor of 0.5.

In principle one could also use a finer logical resolution given the necessary low count
rates. The problem is, however, that there is a considerable fraction of droplets which
consist of only one pixel. The size of the subpixels is obviously limited from below
by the fact that these droplets all have to go into one subpixel. This is also the reason
for choosing the limits between the subpixels ∆xi and ∆yi the way it was done: The
classification can be done best if the charge is spread approximately equally between
two pixels. The fact that the photons are absorbed in different depths in the chip and
that therefore the charge clouds have different sizes also leads to the two-dimensional
distribution of fractional moments p(∆x,∆y) not factorizing into p(∆x)p(∆y). Therefore
the numbers of counts in the quarter-subpixels defined as above is not equal, rather
the numbers of the subpixels corresponding to the centres of the physical pixels and
the subpixels corresponding to the corners of the physical pixels are higher than the
numbers of the subpixels corresponding to the edges. This does not invalidate the
second approach, only the factor in Eq. (5.5.3) will get a bit higher. The third approach,
however, needs a classification such that all the logical pixels have the same expected
value of counts, otherwise an artificial apparent contrast is introduced. Therefore a more
complicated definition of subpixels would be needed. This has not been implemented yet,
the data obtained by the Andor CCD were therefore evaluated by the second approach.

5.6. Fitting the auto-correlation functions

For quantitative analyses the auto-correlation function as written by computeacf into
acf.txt has to be fitted by a function of a form as predicted by the theory. In the most
simple case this is just 1 plus an exponential with fitted decay time and fitted coherence
factor

g(2)(∆t) = 1 + βe−∆t/(2τ), (5.6.1)

obtained by plugging Eq. (2.3.19) into Eq. (3.6.12).
Fitting was done with the program gnuplot, as this is a small, fast, flexible, and

free tool, running on all relevant platforms. If the number of data points in the auto-
correlation function is T then the variance of the data point corresponding to ∆t is
inversely proportional to T − ∆t, because this is the number of pairs of frames which
can be correlated. Therefore the weight given to each data point in fitting should
be proportional to T − ∆t. For gnuplot the weight has to be specified via a quantity
proportional to the expected standard deviation, that is

√
T − ∆t. gnuplot does not seem

to give the user the ability to access the length of the data set explicitly, but the following
algorithm, where acf is a string holding the path and the filename of the auto-correlation
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function, does the trick:

fit T acf u 0:0 via T

T=ceil(T*2+.5)

g(x)=beta*exp(-2*x/tau)+1

fit [x=1:*] g(x) acf u 0:1:(1/(sqrt(T-$0))) via beta,tau

The fit range has to be restricted to positive time delays as the value of the auto-correlation
function for time delay ∆t = 0 is dominated by the influence of Poisson noise.
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6. Considerations concerning the
experiment

In this chapter I will present some useful calculations for setting up the experiment. First
the signal-to-noise ratio (the inverse of the relative standard error of the fitted correlation
time) is computed as a function of the number of counts per pixel, the coherence factor,
and the correlation time, leading to the identification of the product of intensity and
coherence factor as the figure-of-merit. In the second section the optimization of the
beamline set-up with regard to this figure-of-merit is discussed.

6.1. Counting noise

The statistical errors in an XPCS measurement have two sources: the stochastic nature of
the fluctuations in the sample (and therefore of the scattered radiation) and the stochastic
process of photon quantization. In wide-angle scattering it is justifiable to treat all the
approximately 106 pixels on the detector as equivalent within the experimental accuracy,
i.e. belonging to the same q. The measured auto-correlation function then samples
over 106 distinct evolutions of the intensity, and the mean evolution has therefore a
relative accuracy on the order of 10−3. The number of scattered photons in the diffuse
regime, however, is low with today’s X-ray sources, even with samples selected for their
scattering efficiency. Therefore the attainable accuracy is governed by the Poisson noise
of photon quantization. In this section I will calculate the statistical accuracy of the
correlation time fitted onto the measured auto-correlation function as a function of the
actual correlation time and the experimental parameters.

It comes in handy here to measure time by frames. Let G(2)(k) be the experimental
auto-correlation function before normalization, i.e. it is the product of the number of
photons detected a time interval of k frames apart, averaged over all pixels and absolute
time. Let N be the number of pixels and K the number of frames. Let p(I1, I2) be the joint
probability density of the squared modulus of the electrical field (i.e. the intensity before
quantization) at two times which are k frames apart. As already postulated in Section 3.6
the expected value of G(2)(k) with k > 0 is given by

E
(
G(2)(k)

)
=

∫
dI1dI2p(I1, I2)

∑
n1

In1
1

n1!
e−I1

∑
n2

In2
2

n2!
e−I2n1n2

=

∫
dI1dI2p(I1, I2)I1I2.

(6.1.1)
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The variance of G(2)(k) is given by

V
(
G(2)(k)

)
=

1
N(K − k)

(∫
dI1dI2p(I1, I2)

∑
n1

In1
1

n1!
e−I1

∑
n2

In2
2

n2!
e−I2n 2

1 n 2
2 − E

(
G(2)(k)

)2
)

=
1

N(K − k)

(∫
dI1dI2p(I1, I2)(I1 + I 2

1 )(I2 + I 2
2 ) − E

(
G(2)(k)

)2
) (6.1.2)

For low count rates, that is for E(I j)� 1, only the term of lowest order in I j contributes,
leading to

V
(
G(2)(k)

)
=

1
N(K − k)

E
(
G(2)(k)

)
. (6.1.3)

The reason for the statistical inaccuracy to rise with the length of the time interval k is
that the number of pairs of frames which are k frames apart falls, in the extreme case
where k = K − 1 there is only the pair consisting of the first and last frame left.

Due to Eq. (3.6.2) the normalization for the auto-correlation function is to divide by
the square of the mean intensity

g(2)(k) =
G(2)(k)

Ī2
, (6.1.4)

therefore the variance of the normalized auto-correlation function is given by

V
(
g(2)(k)

)
=

E
(
g(2)(k)

)
Ī2N(K − k)

. (6.1.5)

Here I neglected the uncertainty of the measured mean intensity Ī, which is smaller than
the uncertainty of the numerator by orders of magnitude for small intensities. Plugging
in an exponential decay leads to the intermediate result

V
(
g(2)(k)

)
=

1 + βe−2Γk

Ī2N(K − k)
. (6.1.6)

In this section I write Γ for the inverse of the correlation time τ for notational convenience.
What is more interesting than the statistical accuracy of one point in the experimental

auto-correlation function is the fitted decay time (or its inverse Γ). This is a non-linear
problem, as the fitted auto-correlation function is a non-linear function of Γ. It can
be linearized, however, and fortunately the linearized problem is equivalent to the
non-linear problem for small uncertainties.

Suppose that the non-linear least-squares problem is solved by ĝ(k; β̂, Γ̂), yielding the
fitted parameters β̂ and Γ̂. The idea is now to pretend to fit the residuals by a linear
combination of the partial derivatives of ĝ with respect to the parameters. It is clear
that the best fit to the residuals is with the coefficients of both partial derivatives equal
to zero, because otherwise β̂ and Γ̂ would not solve the original problem. The new
problem, however, is linear, allowing standard techniques for estimation of the parameter
uncertainty to be employed:
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Let X be the matrix of the basis functions of the linear problem to be fitted, i.e. in this
case

X =


...

...
∂
∂β ĝ(k; β,Γ)

∣∣∣∣
β̂,Γ̂

∂
∂Γ ĝ(k; β,Γ)

∣∣∣∣
β̂,Γ̂

...
...

 =


...

...

e−2Γk∆t −2k∆tβe−2Γk∆t

...
...

 (6.1.7)

where k runs from 0 to K − 1 and ∆t is the temporal spacing of the frames. Let M be the
covariance matrix of the entries of the experimental auto-correlation function, that is

Mk, j = δk, j
1 + βe−2Γk

Ī2N(K − k)
(6.1.8)

due to Eq. (6.1.6) and the fact that entries corresponding to distinct times are uncorrelated
in the limit of small Ī.

The covariance matrix of the fitted parameters is then given by

M̂ =
(
X∗M−1X

)−1
, (6.1.9)

with the variance of the inverse of the fitted correlation time in its lower right entry. The
signal-to-noise ratio of the fitted correlation time is then given by

E(τ̂)√
V(τ̂)

=
E(Γ̂)√
V(Γ̂)

=
√

NI0β f (τ/T, β,K) (6.1.10)

where T is the duration of the experiment, I0 = KĪ are the mean counts per pixel over the
whole experiment, and f (τ/T, β,K) has a finite limit for both β→ 0 or K→∞.

I want to elaborate on this result a bit. For a fixed correlation time with respect to
the duration of the experiment the signal-to-noise ratio goes with the square root of the
number of pixels averaged over, which is immediately obvious. The linearity of the
dependence on the coherence factor β in first order is plausible as the relative uncertainty
of the points of the auto-correlation function decreases linearly with β. The linearity in I0
is probably not so obvious at first glance, but as for low I0 most of the frames have no
photon in a given pixel, only a small number has one photon, and higher counts can
be neglected, the auto-correlation function essentially just counts the pairs where there
was one photon in both frames. This number is quadratic in I0, its standard deviation is
therefore linear, and its relative standard deviation goes with I−1

0 .
The behaviour of the signal-to-noise ratio in its general form is best evaluated numeri-

cally. Doing the summations the experimentally relevant limiting case of small β and
large K can be obtained analytically with reasonable effort, however:

f (τ/T, β→ 0,K→∞) =
1
2x

√
e−xx3 + (e−x + 1)x2 + 4(e−x − 1)x + 2(e−x − 1)2

x + e−x − 1
(6.1.11)

where x is shorthand for 4T/τ.
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Figure 6.1.: Influence of the ratio between the correlation time τ and the duration of the
experiment T on the signal-to-noise ratio. The upper blue curve is for the
limit of small β as given in Eq. (6.1.11), the middle red curve and the lower
green curve are for β = 0.1 and β = 1, respectively, obtained by numerically
solving Eq. (6.1.9) with large K.

For the behaviour of f (x) consult Fig. 6.1. The increase with
√
τ/T for small correlation

times is due to the increasing number of significant (i.e. larger than 1) points in the
auto-correlation function, the decrease with T/τ for long correlation times is due to
the decrease in the observable magnitude of the decay (i.e. the amount by which the
auto-correlation function has decayed before the experiment is over).

The optimal choice of the correlation time is therefore a value τ/T of about 0.7, such that
the auto-correlation function 1+βe−2∆t/τ shows a decay to about 6% of its initial deviation
from 1. This only holds, however, if one has absolute confidence in the stability of the
set-up and the beam. In realistic situations it is very reassuring to choose somewhat
smaller correlation times so as to be able to compute the two-time auto-correlation
function and confirm visually that what one measures are indeed equilibrium dynamics
and not artefacts, in the worst case excluding such artefacts from the evaluation.

6.2. Optics and contrast

In Section 3.6 the influence of the dynamics in the sample on the intensity-intensity
auto-correlation function was treated. This was done under the assumption of ideal
circumstances, i.e. the incoming radiation was considered to be an ideal monochromatic
plane wave, and the scattered radiation to be detected in a point. Here I will address
the non-ideal case, that is to compute the coherence factor β of Eq. (3.6.12) for a given
experimental set-up. As a concrete example relevant to this thesis I will use the values
pertaining to the beamline ID10A at the ESRF.

In a synchrotron the incident radiation is generated by the relativistic motion of the
electrons through the undulator. The electrons in the storage ring are independent,
therefore the radiation generated by one electron has no phase relation with the radiation
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generated by another electron.1 The intensity in a given pixel can therefore be thought of
as the sum of the intensities due to distinct electrons, detected at distinct points within
the detector’s pixel. For a given point in time let I1 = A1A1

∗ be such a contribution with

A1 =

∫
d~x A1(~x)ρ(~x), (6.2.1)

that is A1(~x) is the amplitude with which an electron located at ~x contributes to this specific
scattering event. Apart from the normalization factor and neglecting quantization the
expected value of the measured auto-correlation function at zero time delay is then given
by

g(2)(0) ∝
〈〈

A1A1
∗A2A2

∗〉〉
=

〈∫
d~x1d~x2d~x3d~x4 A1(~x1)A1

∗(~x2)A2(~x3)A2
∗(~x4)

〈
ρ(~x1)ρ(~x2)ρ(~x3)ρ(~x4)

〉〉
,

(6.2.2)

where the inner angular brackets denote the expected value regarding the scatterer
density of the sample ρ(~x) and the outer brackets the expected value regarding the
amplitudes A1(~x) and A2(~x), respectively. This is nothing else than Eq. (3.6.3) at time
delay 0 generalized for non-ideal circumstances. As it was done there, the way to
proceed now is to use the fact that the correlations in the sample are short-range. For
“nearly” ideal circumstances the sample correlation length ξ is much shorter than the
correlation lengths of the radiation, that is the length over which differences between
the amplitudes A1(~x) and A2(~x) emerge (apart from a trivial constant phase offset), so it
suffices to consider the sample correlation function as〈

ρ(~x1)ρ(~x2)
〉
∝ δ(~x1 − ~x2) + c. (6.2.3)

By factorizing the four-point correlation in Eq. (6.2.2) as in Section 3.6 and observing
that the constant vanishes from the integration2 due to the fast fluctuation of Ai(~x), we
arrive at

g(2)(0) ∝
〈∫

d~x1 A1(~x1)A1
∗(~x1)

∫
d~x2 A2(~x2)A2

∗(~x2)

+

∫
d~x1 A1(~x1)A2

∗(~x1)
∫

d~x2 A1(~x2)A2
∗(~x2)

〉
. (6.2.4)

For incoherent radiation A1(~x) and A2(~x) are independent from each other, therefore the
second term vanishes. In this case the normalized intensity-intensity auto-correlation

1This is the difference from X-ray sources of the fourth generation (X-ray free electron lasers), where
the electric field generated by the electrons feeds back and bunches the electrons, enforcing the phase
relation.

2In the scatterer’s language the argument is that we are not in the forward direction.
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function g(2)(∆t) has to be constant equal to one, so the correct normalization factor has
to be the inverse of the first term, leading to

g(2)(0) = 1 +

〈 ∣∣∣ ∫ d~x A1(~x)A2
∗(~x)

∣∣∣2∫
d~x A1(~x)A1

∗(~x)
∫

d~x A2(~x)A2
∗(~x)

〉
, (6.2.5)

where the second term can be equated with the coherence factor β of Eq. (3.6.12). The
statistical weight of the amplitudes Ai(~x) obviously has to be the weight with which they
contribute to the intensity on the detector.

Under simplifying assumptions Eq. (6.2.5) can in principle be evaluated analytically:
Treating the incident radiation as composed of plane waves and neglecting diffraction
at the beam-defining slits, the amplitude Ai(~x) is just the characteristic function of the
illuminated volume modulated by a plane wave with wave-vector ~qi, corresponding
to the difference between the wave-vectors of the incident and the outgoing waves.
The integral in the numerator of Eq. (6.2.5) is then just the Fourier transform of the
characteristic function of the illuminated volume evaluated at ∆~q = ~q1 − ~q2, where the
probability density of these ∆~q is given by the angular size of the source and the pixel
(direction) and the energy spread of the radiation (length). This simple approach works
surprisingly well where it is applicable (Falus, Lurio, and Mochrie, 2006), but it cannot
deal with focussing. This will be treated in the following.

The essential features of the optical setup at beamline ID10A at the ESRF are illustrated
in Fig. 6.2. An electron passing through the undulator generates a cone of radiation
concentrated around the direction of propagation of the electron. After being trimmed at
the SS0-slits the wave is focussed by the CRL system (compound refractive lenses). This
is just a block of Be with parabolic cavities, acting as focussing lenses, for in the X-ray
regime vacuum is actually the optically denser medium. The wave then propagates to
the sample, which is approximately in the focal spot. On the way it is deflected at the
monochromator and immediately before the sample it is cut again by the sample slits.
The scattered radiation is then detected at the detector.

d1 d2 d3

d 4

Figure 6.2.: Schematic illustration of the setup at a coherence beamline and the wave
train corresponding to a given photon. The monochromator between the
lenses and the sample slit is not shown.
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Figure 6.3.: Reflectivity of a Si-(111) crystal in symmetric Bragg geometry at 8 keV.

The only working monochromator at ID10A is a single crystal of Si, operating in
symmetric Bragg geometry at the (111)-reflection. Its theoretical reflectivity as a function
of the X-ray energy (Darwin, 1914) is shown in Fig. 6.3. The relative width of the
reflectivity (FWHM) is 1.43 × 10−4. This is much smaller than the width of the first
fundamental mode of the undulator, which is on the order of a few percent, so the
distribution of energies after the monochromator is given by the reflectivity of the Si
crystal.

The source size is defined by the electron beam. Due to the fact that the electrons
are accelerated in the horizontal direction along their way around the synchrotron,
it is strongly asymmetric, being much wider in the horizontal direction. The ID10A-
homepage3 gives the size of the electron beam at the ID10-undulator as 928µm in the
horizontal direction and 23µm in the vertical. The divergences are 24µrad and 9µrad,
respectively. All these values are to be understood as FWHM. Due to Als-Nielsen and
McMorrow (2001) the FWHM-angular divergence of the radiation cone generated by
one electron is given by

√
2λ/L, where λ is the fundamental wavelength and L = 1.6 m

the length of the undulator. This gives a value of 14µrad at 8 keV, which conforms with
the values given for the divergence of the photon beam of 28 × 17µrad2.

The distance from the source to the lenses d1 is 33.5 m. The width of the SS0-slits
can be chosen by the experimenter, common values are 300µm both in horizontal and
vertical direction. The lens system has a focus length of 11.7 m at 8 keV. The distance
from the lenses to the position of the sample d2 is 12.2 m. The widths of the sample slits
can be chosen independently in the two dimensions, they are on the order of 10µm. The
distance from the sample slits to the sample d3 should be chosen as close as possible, as
the footprint on the sample gets larger with higher distances due to diffraction, leading to
smaller speckles. A distance of 0.15 m seems the minimum value when using a compact

3http://www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID10A/BeamlineDescription
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furnace and having dismounted the guard slits. The distance from the sample to the
detector d4 can be chosen arbitrarily within reasonable limits.

Due to Eq. (6.1.10) the goal is to maximize the product of intensity and contrast. A
few preliminary observations are immediately clear: the speckles have a characteristic
angular size given by the wavelength divided by the sample slit width, whereas the
angular size of the detector’s pixels can be scaled arbitrarily via the sample-detector
distance. Once the distance is so far that the angular pixel size is clearly smaller than the
speckle size, going still farther away only decreases the count rate without increasing
the coherence factor β. On the other hand, for short distances the decrease in β is
compensated by the increase in the intensity. The sample slit size shows an analogue
behaviour: a small slit gives a lower intensity and large speckles, but β does not profit
any more once the speckles are larger than the pixels. A large slit gives a high intensity
but small speckles, leading to decreasing β once the speckle size is smaller than the pixel
size. Another effect of the sample slit size is the coherence of the incoming radiation:
once the slit is larger than the transversal coherence length, β decreases also from
this side. These two processes for the decrease of β are multiplicative. The optimal
set-up would therefore be the following: close the slits (trading intensity for β) to the
transversal coherence length, and then reduce the sample-detector distance, gaining
intensity without sacrificing in β as the speckle size will be very big.

For a quantitative treatment Eq. (6.2.5) has to be solved. The average in Eq. (6.2.5) can
be performed for a given set of parameters by Monte-Carlo integration: a position and a
direction of the electron and a wavelength of the generated radiation is randomly cho-
sen, subject to the respective probability distribution functions (independent Gaussian
distributions for horizontal and vertical position, horizontal and vertical divergence,
and the Darwin reflectivity for the wavelength). The cone of radiation is propagated to
the SS0-slits. The phases of the amplitudes within the opening of the slits are modified
corresponding to their path length in Be. The amplitude after the lenses is then propa-
gated to the sample slits. Here everything outside the opening is set to zero again, the
rest is propagated to the sample. A position within the pixel is randomly chosen, giving
a direction of the outgoing radiation. This then specifies A(~x), the amplitude with which
each subvolume in the sample scatters, also accounting for the different path lengths
within the material leading to different absolute values of the amplitudes. For a sample
in transmission geometry normal to the incident beam the amplitude can be factorized
A(~x) = Ah(x)Al(y)Av(z), allowing the problem to be efficiently solved.

In the following I take a standard set-up, then I vary single parameters and report
their effects. The standard values are a wavelength λ = 1.55 Å with vertical focussing,
SS0-slit widths of 300µm in both dimensions, sample slits of 7µm in both dimensions,
a distance from the sample slits to the sample of 17 cm, a sample thickness of 10µm
with an absorption length of 12µm, and the Andor CCD (see Section 5.1) at a distance
of 50 cm, a scattering angle 2θ = 25◦, and an azimuthal angle ϕ = 45◦. This gives a
coherence factor β of 4.8%.

First to the primary slits: in principle it would be beneficial to open them wider,
because going to 400µm in both directions gives a factor of about 1.32 in intensity,
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Figure 6.4.: Scan of the coherence factor β as a function of the detector distance d4 and
the width of the sample slits (set equal in horizontal and vertical direction.),
for the remaining values see text. The line shows the settings giving optimal
intensity for a given β.

whereas β drops only by a factor of 0.89. The problem is that this increases the heat
load on the monochromator windows, which degrade with time even with 300µm. The
value of 300µm seems to be the compromise between having enough intensity and being
considerate of the equipment. A minor overall increase could be achieved by closing the
vertical slit by about 10µm and opening the horizontal slit accordingly, but the increase
in intensity is nearly made up for by the decrease of β.

The question whether focussing is a good idea can be answered in the affirmative:
compared to the situation without lenses, it gives about a factor of 30 in intensity while
decreasing β only by about 0.67. This is only due to vertical focussing, however, the
increase in intensity when enabling horizontal focussing is lost again with the decrease
in β.

What is left is the width of the sample slits and the sample-detector distance. The
coherence factor β as a function of those two values (assuming the same value for the
sample slit in horizontal and vertical direction) is shown in Fig. 6.4. The intensity is not
shown as it is in a very good approximation proportional to the area of the sample slits
and strictly proportional to the inverse of the square of d4. It can be seen that for a given
detector distance there is a certain finite slit width which gives the maximum coherence
factor, here it is around 6µm. This is where diffraction at the slit sets in, closing the slit
further would lead to a wider footprint of the beam on the sample and therefore smaller
speckles. The slit width where this happens is obviously a function of the distance from
the sample slits to the sample, which was here 17 cm. With the sample in a furnace and a
beam monitor after the slits, smaller distances are hardly possible.

Blindly maximizing the product of intensity and coherence factor would lead to an
extremely close detector and wide slits, giving a high intensity and a low contrast. This
is not what one really wants, however. Apart from the fact that with decreasing detector
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distance the spread of the wave-vector transfer over the pixels of the detector increases
(rendering suspicious their treatment as equivalent pixels), the evaluation as described in
Section 5.4 relies on the fact that the charge clouds generated in the CCD do not overlap.
Another point is that with small β the decay of the correlations can disappear behind
spurious features of the auto-correlation function caused by, e.g., different sensitivities
of the pixels. Therefore it seems wise to optimize the product of intensity and β under
the constraint of an upper bound on the intensity (or equivalently a lower bound on the
coherence factor). The solution to this problem as a function of the maximum intensity
allowed is given by the line in Fig. 6.4.

At a detector distance of 50 cm slit sizes of 7µm are obviously a good choice. If the
intensity is low and the coherence factor high enough, one could gain by reducing the
distance further. Here the optimal slit size is already influenced by diffraction at the slits,
this is corroborated by the observation that increasing the slit size in one dimension and
reducing it by the same factor in the other dimension always lowers β, a square aperture
is therefore the best choice.

One should be careful in taking the results presented here at face value. First, the
values of the coherence factor β obtained here are probably too high. This is because all
the optical elements were considered as ideal, whereas, for instance, the energy after
the monochromator will have a wider distribution in reality because of oxidation of
the crystal due to the heat load. Another source of uncertainty are the distances used
here: changing the distance between the lenses and the sample by 20 cm already has
a discernible effect, and this clearly holds also for the distance from the source to the
lenses, where the source is actually not a point but three undulators in a row, each 1 m
long. The qualitative conclusions drawn here, however, should be valid.
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7. Experimental results

The culmination of the thesis is presented in this chapter: the results from measurements
of atomic diffusion in several systems. These measurements were done during four
beamtimes at ID10A at the ESRF (European synchrotron radiation facility) in Grenoble,
France:

• HS-3419 from Sept. 19th to Sept. 25th, 2007. This beamtime dealt with the coarsening
of Ag precipitates in glass. We used the last two days for a feasibility test of the
measurement of atomic diffusion in the metallic glass and in Cu90Au10. Our local
contact was Federico Zontone.

• HD-228 from April 16th to April 22nd, 2008. This beamtime was allocated for the
study of the metallic glass, which we did in the first half. We used the rest for
the measurements on Cu90Au10 reported in Section 7.1. Local contact was Andrei
Fluerasu.

• HE-2845 from Feb. 28th to March 3rd, 2009. This beamtime was awarded for
studying Cu-Au. Having done that already we instead used it for remeasuring the
metallic glass and anticipating the next beamtime and measuring Si89Ge11. The
local contact was Anders Madsen.

• HS-3839 from April 22nd to April 27th, 2009. The aim of this beamtime was to study
atomic diffusion in Si-Ge. Apart from that we also did an unsuccessful feasibility
test of studying diffusion in Fe65Al35. The local contact was again Federico Zontone.

For all the experiments reported here the X-ray energy was set to 8 keV (unless otherwise
noted), corresponding to a wavelength of 1.55 Å, monochromatized by a Si-(111) crystal
as described in Section 6.2.

7.1. Cu90Au10

This alloy was already considered in my diploma thesis as the most auspicious system
for this kind of experiment: Cu has a relatively low absorption coefficient for X-rays of
8 keV, the preferred energy at ID10A, Au has a very high solubility in Cu at the relevant
temperatures, and the difference in the atomic number (and therefore electron density)
between Cu and Au is among the highest possible for miscible elements. All these
aspects taken together imply a high value for the diffuse scattered intensity, which is the
limiting factor in today’s atomic scale XPCS.
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We did measurements on this system during two beamtimes: at HS-3419 in September
2007 the last day was used for a feasibility test where the amount of scattered photons
with a coherent set-up was ascertained, also a measurement run at a fixed position in
reciprocal space at room temperature, at 287◦C, and at 307◦C, respectively, was done.
The measured data showed that the amount of scattered radiation was sufficient and
that at room temperature the scattered intensity showed static correlations at non-zero
contrast, whereas at the elevated temperatures the contrast had vanished. This was
already a result, showing that diffusion in Cu90Au10 at room temperature happens at
timescales that were too long to be accessible with XPCS, whereas timescales were too
short at 287◦C. The principal measurements were done in April 2008 during the second
half of beamtime HD-228; the results from these measurements have been published in
Leitner et al. (2009) and will be presented in the following.

The system was discussed in Section 4.3, in short: at the relevant temperatures it is a
solid solution of Au in the face-centred cubic Cu crystal showing short-range order. The
sample used was the same single crystal as was used by Schönfeld et al. (1999), who
give the actual composition as determined by X-ray fluorescence analysis to be within
0.2 at.% of the nominal value.

For the experimental set-up see Section A.3. We used the old furnace with the flight
tube attached to it, both filled with He. The temperatures reported in the following
are to be understood as the temperatures felt by the thermocouple, but due to the
He atmosphere the discrepancies should be very small. We used the PI CCD with a
sample-camera distance of 1.32 m. The exposure time per frame was 10 s, due to the time
required for data transfer the actual frame rate was 12.34 s. We used the Be-CRL system
for focussing in the vertical direction. The sample slits were set to 9µm in the horizontal
and 12µm in the vertical direction. The count rate was about 10000 photons per frame
or 3 photons per pixel over a measurement run of typically 600 frames.

The sample was cut with a wire saw and ground to a nominal thickness of 12µm. As
we used a spot on the sample with a transmission of 0.18 at 8 keV, the actual thickness
comes out as 18µm assuming an absorption length of 10.5µm as given by Vegard’s rule.

Nominally, the sample was cut along the (11̄0)-plane as determined by Laue backscat-
tering and mounted with the surface normal to the incident beam such that the [001]-
direction was at an azimuthal angle of ϕ = 45◦ and the [110]-direction at an azimuthal
angle of ϕ = −45◦ with the azimuthal angles measured with respect to the horizontal
plane (for an illustration of the angles see Fig. A.2). After the experiment the sample
was left in the furnace and the actual orientation was determined, according to which
the orientation can be reproduced by positioning the sample in the nominal orientation,
turning it around the direction of the incident beam such that the [001]-direction is at an
angle of ϕ = 51◦, then to tilt it by 1.8◦ so that its top goes towards the beam, and finally
to turn it around the vertical axis by 2.7◦ so that the side corresponding to ϕ = 180◦ goes
towards the beam. The actual orientation was used for the following calculations of the
theoretical coherent linewidth Γcoh(~q). Note that moving the detector from ϕ = 45◦ to
ϕ = −45◦ (in the nominal orientation) for fixed 2θ corresponds to going in reciprocal
space from a direction along X over L to K as defined in Fig. 4.12 (there is an equivalent
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Figure 7.1.: Auto-correlation function for a measurement at 543 K with ϕ = 45◦ and
2θ = 25◦ together with an exponential fit.

point K on each of a hexagon’s three sides bordering another hexagon). For a scattering
angle of 2θ = 25◦ the modulus of ~q is 1.75 Å−1, therefore the path in reciprocal space
grazes the boundary of the first Brillouin zone.

For an exemplary auto-correlation function see Fig. 7.1. Fitting was done with an
exponential decay with ~q-dependent correlation times. The fitted correlation times for
several values of 2θ for fixed ϕ = 0◦ at a temperature of 543 K is shown in Fig. 7.2. A
scan of ϕ for the same temperature and scattering angles of 2θ = 20◦ and 2θ = 25◦ are
shown in Fig. 7.3. The theoretical values were calculated according to Eq. (2.3.21) and
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Figure 7.2.: Measured decay times as a function of the scattering angle 2θ at a temperature
of 543 K and an azimuthal angle of ϕ = 0◦ together with the values expected
for nearest-neighbour jumps taking into account short-range order.
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Figure 7.3.: Measured decay times as a function of the azimuthal angleϕ at a temperature
of 543 K and a scattering angle of 2θ = 20◦ (upper panel) and 2θ = 25◦ (lower
panel) together with the values expected for nearest-neighbour jumps taking
into account short-range order.

Eq. (2.3.14) for nearest-neighbour exchanges in the face-centred cubic lattice, where the
values for ISRO were computed from the occupations of the first 13 nearest-neighbour
shells as given by Schönfeld et al. (1999). The only free parameter left in this theory
is the raw jump frequency ν̃ in the nomenclature of Section 2.3, which is (2230 ± 60) s
at 543 K. Given the fact that these 16 independent data points were fitted by just one
parameter the agreement is striking. By comparing the two panels of Fig. 7.3 one can
get the impression, however, that perhaps the linewidths for 2θ = 20◦ are too narrow in
relation to the ones for 2θ = 25◦. Also the data in Fig. 7.2 seem to hint into the direction
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that the increase with 2θ should be shallower around 20◦. Two possible reasons can be
given for this effect: On the one hand it could be due to the action of the vacancy as
treated in Section 3.5, leading to modified effective translation vectors. Contrary to self
diffusion, where the effects can be readily computed without any additional parameters
(Sholl, 1981), here the affinity of the vacancy to the constituent atoms would have to be
considered, which was not attempted. The other possibility is that the temperature is
already so low that deviations from the theory as treated in Section 4.3 appear. Note that
the lower panel of Fig. 4.12 corresponds to a temperature of 530 K, which is only slightly
lower than the 543 K of the experiment.
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Figure 7.4.: Chemical diffusion constant as a function of temperature with an Arrhenius
fit.

After establishing the diffusion mechanism the chemical diffusion constant as defined
in Section 2.3 can be inferred from measuring the correlation time at any given wave-
vector. This was done at 2θ = 25◦ and ϕ = 0◦ for a number of temperatures, the
results of which are given in Fig. 7.4. As shown in Section 6.1 the relative errors due to
counting noise get larger both for long and short correlation times. This does not seem
to be a problem here, but it is quite possible that the value corresponding to the lowest
temperature is already affected by instabilities of the beam.

The variation of the chemical diffusion coefficient with temperature is due to the
variation of the jump frequency ν̃. There are two contributions to this variations: on the
one hand it is ES, the mean energy necessary to raise the jumping atom to the saddle
point on the energy landscape, on the other hand also the vacancy concentration is
thermally activated. For the small range of temperatures treated here all the other
aspects can be considered as temperature-independent, therefore it is valid to fit the
diffusion coefficients by an Arrhenius dependence. This was done in Fig. 7.4, giving
an activation enthalpy of EA = (2.09 ± 0.15) eV. There are no measurements of chemical
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diffusion in Cu-Au to compare this value with, but as the Au-atoms repel each other as
nearest neighbours, chemical diffusion has to be closely linked to tracer diffusion of Au
in Cu90Au10. The activation enthalpy obtained here is in very good accordance with the
values of 2.0–2.2 eV obtained for the tracer diffusion of Au in Cu (Fujikawa et al., 1986).

7.2. Fe65Al35

This system was measured only briefly at the beamtime HS-3839. Iron is a problematic
constituent for such experiments as will become clear below, we considered it only
because a single crystalline sample was already available from preceding Mößbauer
experiments.

Just as NiAl, FeAl displays the B2-ordering. The surplus Fe-atoms are incorporated as
structural antisites on the Al-sublattice. We would therefore expect diffuse scattering
from these Fe-antisites. Iron has its K-edge at 7.112 keV, hence we set the undulator to
an energy of 7.1 keV. The necessity for going below the edge is only in part due to the
increased absorption above the edge, the more important point is to avoid fluorescence
which would drown the elastic diffuse intensity.

The left panel of Fig. 7.5 shows a histogram of the photon energies detected with
an incident energy of 7.1 keV, using the reference value of 1955 ADUs corresponding
to an 8 keV-photon as established in Section 5.3. It seems that there are elastically
scattered photons (photons with an energy of 7.1 keV), but there is obviously also FeKα-
fluorescence at 6.4 keV. Evaluating only the apparently elastically scattered photons
showed no contrast, however, even when the sample was at room temperature. Also the
scattered intensity was extremely low at 350 counts per frame of 20 s.

We also tried to measure with an incident energy of 8.0 keV. The histogram from
this experiment is shown in the right panel of Fig. 7.5. While the histogram from the
measurement with 7.1 keV corresponded to an accumulated exposure of nearly 7 hours,
here it is an accumulated exposure of only 10 s. The overall scattered intensity is therefore
higher by a factor of about 2500, while the incident intensity is only higher by a factor of
5. Therefore the scattered photons at 8.0 keV were nearly exclusively due to fluorescence,
also their energy distribution fits with FeKα and FeKβ. Note that the apparent similarity
of the two panels of Fig. 7.5 suggests that also with the nominal incident energy of
7.1 keV most of the “elastic” photons were actually FeKβ-fluorescence.

What can be learned from this experiment is that the energy distribution after the
monochromator as given by Fig. 6.3 is only the ideal case. In reality the inevitable
degradation due to the high heat load will lead to more pronounced tails of the reflectivity
curve, it is therefore highly recommendable to have a wider safety margin between
the incident energy and the absorption edge. The reduction by a factor of 5 in the
incident intensity when going from 8.0 keV to 7.1 keV is mostly due to the change in the
focal length of the Be-CRL system. This factor could therefore be gained by using the
ID10C-branch (which can focus at 7 keV), but still the intensity would probably be too
low for measurements at the ESRF.
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Figure 7.5.: Histograms of detected photon energies for an incident photon energy of
7.1 keV (left) and 8.0 keV (right).

7.3. Si89Ge11

Extensive experiments on this system were done during the beamtimes HE-2845 and
HS-3839 in March and April of 2009 using both furnaces (see Section A.3). It was selected
for its differences from metallic systems and because a successful experiment would
provide a definitive answer as to which mechanism of diffusion (from among the number
of possible candidates as given in Section 4.1) is at work in this system, a question which
is still open.

One main distinction from the other systems treated here is the high activation
enthalpy of diffusion. This is a significant difference as became clear in the course of
the experiments. What we observed in the two-time auto-correlation functions were
apparent dynamics that got slower with time, prompting us to raise the temperature again
and again. Such a behaviour could in principle result from kinetics-driven dynamics, this
means that the system is out of equilibrium after changing the temperature, causing the
atoms to rearrange for the new equilibrium. This explanation seemed highly suspicious
as there should be no short-range order in SiGe at such elevated temperatures. After
chasing these “dynamics” from 500◦C to 870◦C, with the decay of the correlations
being fast each time after raising the temperature and then slowly dying away, we
were sure that something was wrong, because if the equilibrium dynamics were too
slow to be measurable at 870◦C, any atomic motion at 500◦C would be unthinkable.
Moreover, sometimes the two-time auto-correlation function showed artefacts as in
Fig. 7.6. Computing the ordinary auto-correlation function for seemingly undisturbed
stretches such as the first 290 frames in Fig. 7.6 yielded a form as given in Fig. 7.7,
which could satisfactorily be fitted with auto-correlation functions of the form 1 +
β exp(−2(∆t/τ)2) with apparently ~q-dependent correlation times.

At first I thought that this behaviour was due to the sample moving slowly with
respect to the beam, leading to the gradual loss of the correlations on the timescale of
a given point in the sample transversing the illuminated area. It seemed unrealistic,
however, that this velocity of 10µm per half hour and sometimes even faster could
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Figure 7.6.: Two-time auto-correlation function of 434 frames of a measurement of
Si89Ge11 at 840◦C in pseudo-color display, smoothed by a Gaussian kernel
with a width of 3 frames. The singular event is at frame 290.

have been maintained for days. Also this would lead to a linear decay with time of the
correlations for small times. The true reason for this puzzling behaviour became clear to
me only recently: a quick calculation shows that rotating the sample by just 0.002◦ moves
the speckle pattern in reciprocal space by a speckle width. Assuming a speckle form
of (sin(x)/x)2 and folding with the auto-correlation of the characteristic function of the
pixel gives a shape very similar to a Gaussian distribution, which explains the observed
form of the intensity auto-correlation function. This also explains the fact that with
higher scattering angles the correlations decay faster. Fig. 7.6 can now be understood:
the sample is subject to a steady rotation, at frame 290 it jumps back to the position
corresponding to frame 180, and it proceeds with the original movement, leading to
off-diagonal correlations. It moves now a bit faster so that already at frame 370 it passes
through the position it had immediately before the jump.

This rotating of the sample is obviously due to temperature as changing the tem-
perature leads to an initially faster loss of correlation. It cannot be caused by solely
elastic expansion and contraction, however, because the motion is still there even hours
after changing the temperature. It is also not due to fluctuations in the temperature;
these were on the order of a few tenths of a degree, whereas one has to change the
temperature by five degrees during the measurement to cause a correlation loss. Probably
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Figure 7.7.: Auto-correlation function for a measurement at 800◦C together with a fit of
the form 1 + β exp(−2(∆t/τ)2).

it comes from the plastic release of stresses in some parts of the furnace, or the ill-defined
situation produced by clamping the brittle sample into the sample holder and necessarily
crumbling it partially.

A concluding remark should be that the temperatures of up to 870◦C used here seem
very high compared to literature data (Kube et al., 2008), all the more given the fact
that these temperatures were seemingly too low for diffusion to happen. As explained
in more detail in Section A.3, the temperatures quoted here are the temperatures of
the sample holder (felt by the thermocouple), which glowed much brighter than the
sample at such elevated temperatures. We have yet to ascertain the relation between the
temperature of the sample holder and the sample, but definitely a diffusion experiment
in SiGe needs furnaces allowing still higher temperatures, which is quite a problem due
to the need for a large solid angle for the exiting radiation.

7.4. The metallic glass Zr65Cu17.5Ni10Al7.5

This system is a so-called bulk metallic glass, that means during cooling from the liquid
to the solid state moderate cooling rates suffice to prevent crystallization, allowing bulk
samples to be prepared in a glassy state. This system therefore constitutes an opportunity
to extend our studies to diffusion in non-crystalline media, a field where many questions
are still left to be answered (see Section 4.4). A more practical reason for studying this
system is that XPCS deals with diffuse scattering, of which there is much available here.

Apart from the feasibility test during the beamtime HS-3419 we did the main measure-
ments on this system during the beamtimes HD-228 and HE-2845. For the experimental
set-up see Section A.3. During the second beamtime we had the same problems as
described in Section 7.3, we thought that we measured dynamics while in reality it was
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Figure 7.8.: 2θ-scan of the scattered radiation after the experiment.

most probably the sample moving. These measurements were done between 300◦C and
327◦C and for different scattering angles 2θ. In beamtime HD-228, however, we paid
more attention to covering a wide range of temperatures. We performed measurements
for temperatures from 260◦C to 370◦C using the old furnace. This wide range of temper-
atures led to partial crystallization as can be seen from the small Bragg peak at about
31.5◦ in Fig. 7.8. These measurements were therefore done under ill-defined conditions.
Also we witnessed ageing, i.e. revisiting a temperature yielded slower dynamics than in
the first measurement, but this contributes to my confidence that what I report in the
following are really the dynamics of the sample and not of the sample mount.

We did our experiment in the short-range order peak of the glass at 2θ = 37◦. The
two-time auto-correlation functions of the measurements at 300◦C showed correlation
losses with a frequency of about two per hour, this means that there were singular events
where obviously something moved, destroying the correlations between the frames
before and after this event. The correlation times due to the dynamics in the sample
were seemingly on longer timescales. For higher temperatures such correlation losses
are not visible in the two-time auto-correlation functions. This is probably due to the
fact that the sample correlation times are shorter, so there are hardly correlations over
longer timescales that could be destroyed by these singular events. Assuming that they
happen about as frequently as at lower temperatures implies that the auto-correlation
function is only weakly affected by them. This is corroborated by the fact that the fitted
correlation times show a strong temperature dependence.

In non-crystalline media it is usually found that the correlation functions cannot be
fitted with a simple exponential decay. By convention one then introduces an additional
parameter γ and fits the expression 1 + β exp(−2(∆t/τ)γ) to the data, which gives always
a good fit from the phenomenological viewpoint. Here γ was always around 2, giving
compressed exponential decays as illustrated in Fig. 7.9. For the fitted correlation times
as a function of the temperature see Fig. 7.10. The estimated errors of the fitted τ are
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Figure 7.9.: Auto-correlation function for a measurement at 330◦C together with a fit of
the form 1 + β exp(−2(∆t/τ)γ).

here a few percent, which is about the point size. Especially at lower temperatures the
measured correlation times will likely be too short because of the possibility of hidden
correlation losses. I want to restate that these are non-equilibrium values, they depend
on the sample history. Here the sample was kept for about two hours at 370◦C prior
to these measurements, then the measurements were done in the order of ascending
temperatures, with the sample being kept at each temperature for about two hours. We
intended these measurements only for qualitative information, therefore the correlation
times given in Fig. 7.10 are probably not well reproducible. This is the reason why I
refrain from fitting an activation enthalpy.
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Figure 7.10.: Correlation times for different temperatures.
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For a further experiment on this system one can use the information that the interesting
temperature range is around 350◦C. Keeping the sample at this temperature for a long
time before the experiment should lead to a so-called quasi-equilibrium, which means
that although the sample is not in equilibrium (which can never be the case for a glass),
the kinetic relaxations happen on much longer timescales than the experiment. In this
manner one could record the variation of the correlation time τ and the compressing
parameter γ with the scattering angle 2θ, allowing to gain insight into the dynamics at
work on the atomic scale.
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8. Outlook

Here I want to give some concluding remarks and present an outlook about what I think
would be rewarding directions of future research.

The main point of this thesis was the first successful demonstration of applying XPCS
to study dynamics on the fundamental spatial scale of condensed matter physics, the
atomic scale. X-rays with their wavelengths on the order of atomic distances are naturally
suited for this task, therefore soon after the first demonstrations of XPCS the idea arose
to apply it to measure atomic diffusion. The necessary intensity has become available
only recently, though. The other possible direction to go in using coherent X-rays for
studying dynamics is to smaller timescales. These two ambitions, smaller lengthscales
or smaller timescales, exclude each other with today’s sources, because both need more
intensity; the experiments shown here are limited to correlation times of minutes or
longer. For atomic diffusion this is not a big issue, because by choosing the temperature
appropriately the dynamics in the sample can generally be made to happen on accessible
timescales, and the dynamics at a hundred degrees more are very likely qualitatively the
same. With the availability of the X-ray free electron lasers, however, the fundamental
scale (pico- to femtoseconds) should become accessible also in the time domain. Contrary
to the experiments presented here, where the atomic positions before and after the jump
are compared, this would enable us to follow the atoms during their jumping. For me
this seems to be the ultimate goal in our branch of solid state physics.

In contrast to the qualitatively new kinds of experiments that the X-ray free electron
lasers will bring, the new synchrotrons of the third generation like PETRA III will enable
us to do experiments such as those presented here, but without being restricted to
strongly scattering systems as is now the case. Such experiments will probably never
become a standard technique of sample characterization, but I think that they will
become the method of choice for studying the mechanisms of atomic motion in a few
representative systems, allowing us to develop a comprehensive picture of what happens
at the atomic scale in solids.

Now to the concrete points: I think that it would be very rewarding to make a
thorough investigation of the correlation times as a function of the wave-vector in
Cu-Au. This could be achieved by having a more stable set-up, so that one can be certain
that the measured correlation times are only due to the sample, or by having more
intensity, allowing to measure shorter correlation times (which are more robust against
instabilities). In particular a measurement of a sample with a slightly higher Au content,
say Cu85Au15, would be interesting. There one could probably unambiguously detect
deviations from the first-order theory; as I have demonstrated in Section 4.3 this would
give information on the influence of the jumping atom’s neighbourhood on the barrier
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height it has to overcome. Such data have never been obtained yet. One could compare
them to the results from ab-initio calculations, which would be to my knowledge the
first possibility to test predictions for states far from the relaxed ground state.

The second point I want to emphasize is diffusion in Si-Ge. Even though diffusion in
semiconductors is such an important topic (both for production and thermal stability),
the question of how this happens is still not settled. We need to solve the problem of the
stability of the sample in the furnace at high temperatures first, but then it would be
very easy to decide on the diffusion mechanism.
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A. Appendix

A.1. Eigenvalues of K′

Here I prove that the matrix K′(q) as defined in Section 2.2 has non-positive eigenvalues,
a fact which is related to Gerschgorin’s circle theorem (Gerschgorin, 1931). Actually I
prove it for the matrix K̂(q), which has the same eigenvalues as K′(q) because the two
matrices are similar due to Eq. (2.2.9).

Let λ be an eigenvalue of K̂(q) with eigenvector e, that is∑
µ

(
K̂(q)

)
ν,µ

eµ = λeν ∀ν. (A.1.1)

Now take a fixed ν such that
|eν| ≥ |eµ| ∀µ. (A.1.2)

So Eq. (A.1.1) can be restated as

λ =
(
K̂(q)

)
ν,ν

+
∑
µ,ν

(
K̂(q)

)
ν,µ

eµ
eν

=
∑
∆x

(
K(∆x)

)
ν,ν

e−iq∆x +
∑
∆x

∑
µ,ν

(
K(∆x)

)
ν,µ

eµ
eν

e−iq∆x

=
(
K()

)
ν,ν

+
∑

(∆x,µ),(,ν)

(
K(∆x)

)
ν,µ

eµ
eν

e−iq∆x.

(A.1.3)

Taking the real part shows that

Re(λ) =
(
K()

)
ν,ν

+ Re
( ∑
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(
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= 0,

(A.1.4)

where the last equality is due to Eq. (2.2.1).
Therefore also the real parts of the eigenvalues of K′(q) are less or equal to zero, and

as K′(q) is Hermitian, the eigenvalues are real.
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A.2. The interplay of fluctuation and relaxation

Here I give the proof of Eq. (2.3.20). For the nomenclature I refer the reader to Section 2.3.
Let the system consist of N lattice sites, of which cN are occupied. Take a wave-vector
q and a state of the system σ. The quantity of interest is the amplitude A, the Fourier
transform of σ. I assume that the amplitude is on the order of

√
N, this assumption will

be justified later.
The assumption that the amplitude is on the order of

√
N implies that the contributions

of the distinct particles to the overall amplitude are in first order uniformly distributed
on the complex unit circle, the relative deviations from the uniform distribution are only
on the order of 1/

√
N. Therefore the variance of the real part of the overall amplitude

after exactly one particle has made a jump is given by

vr =
〈(

cos(q(x + ∆x)) − cos(qx)
)2〉

+ O(1/
√

N)

=
〈

cos2(q(x + ∆x)) − 2 cos(q(x + ∆x)) cos(qx) + cos2(qx)
〉

=
(1
2
−

〈
cos(2qx + q∆x) + cos(q∆x)

〉
+

1
2

)
=

〈
1 − cos(q∆x)

〉 (A.2.1)

in the leading order of N, analogously for the imaginary part vi. The exchange rate ν for
a given site is

ν =
∑
∆x

ν̃∆x, (A.2.2)

leading to an increase rate of the variance of the overall amplitude’s real part

d
dt

V
(
A(q)

)
= Nc(1 − c)νvr = Nc(1 − c)

∑
∆x

ν̃∆x

(
1 − cos(q∆x)

)
= Nc(1 − c)Γinc(q). (A.2.3)

The same holds for the imaginary part. The factor c(1− c) is the first-order approximation
for the exchanges leading to a change in the amplitude. The behaviour of the expected
value of the amplitude was already given in Eq. (2.3.13):

d
dt

〈
A(q)

〉
=

〈
A(q)

〉
Γcoh(q) (A.2.4)

Picture now an ensemble of systems, i.e. a distribution of amplitudes in the complex
plane. Eq. (A.2.3) acts as a convolution with a normal distribution with infinitesimal
width, whereas Eq. (A.2.4) acts as an infinitesimal contraction. Due to the interplay
between these two processes the distribution of amplitudes will evolve to a normal
distribution, whose variance (squared width) of the real component Vr can be computed
by requiring stationarity:

0 =
d
dt

Vr = Nc(1 − c)Γinc(q) − 2VrΓcoh(q), (A.2.5)
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the same holds for the variance of the imaginary component Vi. The expected value of
the intensity is the expected value of the modulus of the squared amplitude, that is

ISRO(q) = Vr + Vi =
Nc(1 − c)Γinc(q)

Γcoh(q)
=

1(
1 +

V̂(q)c(1−c)
kT

) , (A.2.6)

proving Eq. (2.3.20).

A.3. The sample environment

Here I give a brief description of the rest of the experimental apparatus, i.e. what is
between the beamline optics (see Section 6.2) and the CCD-camera (Section 5).

A fundamental distinction in scattering experiments concerns the position of the
sample with respect to the optical path. This can either be the so-called transmission
geometry, where the sample is thin (on the order of the X-ray absorption length), the
primary beam passes through the sample, and the scattered radiation is detected at the
downstream side of the sample. The other possibility is scattering geometry, where
the scattered radiation is detected on the side of the sample that faces the primary
beam. Both possibilities have their assets and drawbacks: for transmission geometry
the preparation and the handling of the thin sample can be a problem, especially under
the aspect that it should be a single crystal. With scattering geometry one can use a
comfortably thick sample, and it is principally conceivable to use a powder sample1.
Also there is no exiting beam in scattering geometry, whereas in transmission geometry
one has to intercept the transmitted beam before it hits something and contributes to the
background via elastic scattering or fluorescence. The advantages of the transmission
geometry are first the accessibility of the whole azimuthal angle without having to
rotate the sample and second the robustness to thermal fluctuations: in a furnace with
rotational symmetry with respect to the incident beam thermal fluctuations have in
first order no influence on the position of the sample. In scattering geometry, however,
thermal expansion will move the sample normal to the beam, destroying the correlations
in the scattered radiation. For these reasons up to now all our experiments were done in
transmission geometry.

Apart from the first feasibility test during the beamtime HS-3419, where a furnace
for small-angle scattering was used, the experiments presented in this thesis used two
furnaces specially designed for wide-angle scattering in transmission geometry. At the
heart of both is a drum (see Fig. A.1) around which a wire is coiled, used for resistive
heating. They differ in the fact that the old one uses an electrically insulated wire,
whereas the new one uses a non-insulated wire from a high-resistivity alloy, insulated
by the high-temperature adhesive into which it is embedded. This should allow higher

1This can be an option if a single crystal cannot be grown. A powder of the sample material with grains on
the order of 100 nm interspersed with an X-ray-transparent substance such as boron nitride would give
a well-defined sample as opposed to a polycrystal which will recrystallize under elevated temperatures
and where the beam hits a small number of crystallites of unknown orientation.
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Figure A.1.: The heart of the old furnace. The sample holder is mounted inside, the
heating wire is coiled outside.

temperatures. Inside this drum the sample holder is mounted, which is compatible to
both furnaces. The drums are designed in order to cover as much as possible of the solid
angle while still allowing scattering angles of 2θ = 40◦. The drums have a bore where a
thermocouple is inserted. The relation between the thermocouple’s temperature and the
temperature of the sample is still an open question for us, although experience gained
on similar furnaces tells us that at temperatures around 300◦C the discrepancy should
not be more than 5◦C. At temperatures around 800◦C, however, where the drum and
the sample holder can be seen, they are much brighter than the sample. This is because
the sample is heated via heat conduction (which scales with the temperature difference),
but it loses its heat via radiation (which scales with the fourth power of the temperature
difference). Covering part of the opening angle with Ta heat shields and wrapping the
drum in Al foil helps in reaching high temperatures, although the Kapton windows then
slowly become fogged by the evaporating Al.

The temperature was regulated by a controller via the voltage applied to the heating
wire. This is done via a set of three parameters; depending on how good these parameters
were set the temperature showed fluctuations around the nominal value of 0.1◦C to
1◦C. This was no problem, however, as we had experimentally ascertained that the
correlations in the scattered radiation were lost only with temperature differences of 5
degrees or more.

For the set-up see Fig. A.2. The furnaces can be connected directly to the flight tube via
flexible bellows, in fact there exists an adapter so that it can be connected to two flight
tubes. This possibility was used only for the measurements of the metallic glass during
beamtime HD-228, because it proved to be quite demanding to evaluate two data sets in
parallel and to keep two cameras busy in a purposeful way. Anyway, the availability of
two working CCDs is only rarely given. Also the possibility for connecting one flight
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φ

Figure A.2.: The set-up with the old furnace connected to the flight tube. Also visible is
the PI CCD.

tube directly to the furnace was used only in the other half of beamtime HD-228 for the
measurements on Cu90Au10 reported in Section 7.1. For being able to move the flight
tube it turned out to be necessary to fill the furnace and the attached flight tube with
He at ambient pressure because of the forces the atmospheric pressure would exert
onto evacuated bellows. At the other experiments the furnace and the flight tube were
evacuated. Kapton foil was used for the furnace and flight tube windows.

Our single crystal samples were mounted with the surface normal to the incident
beam and they were not moved during the experiments. With the samples made of
metallic glass orientation was no issue, therefore the orientation of the furnace (including
the sample) was adapted in order to more easily reach high scattering angles.

The furnace is mounted on a stage which can be rotated (and also translated by small
distances), the flight tube and the camera are mounted on an arm which can be rotated in
the horizontal plane independently from the furnace. We realized detector positions out
of the horizontal plane by an improvisational construction from X95 rails, the in-plane
dimension was set by moving the goniometer arm.
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