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Preamble

In this lecture course, a detailed account of the atomic scale in solids will be given.
This is to be understood as the question of the arrangement of atoms, both of its
statics and its dynamics. Specifically, it includes on the one hand a description of
the crystalline state and the static deviations from it, such as point defects and
disorder, and on the other hand a treatment of oscillatory and diffusive dynamics.
As the positions of the atoms are the principal degrees of freedom considered here,
any issues of the electronic state appear only indirectly via the potentials the
atoms move in, and will not be discussed here.
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Chapter A

Crystals

This chapter will present the fundamental concepts of the crystalline state, which
in general is the framework appropriate for the atomic scale of solids. Also, it
will consider the deviations from this idealized case, which are instrumental in
determining the properties of real-world materials.

A.1 Symmetries

The distinguishing feature of crystals is the symmetries they display, which will
be covered here. Fundamentally, this corresponds to the mathematical concept of
groups, which will be the starting point.

A.1.1 General groups

A group is a set of elements g ∈G together with a binary operation ◦ : G×G →G
that fulfill

• closedness: If g1 ∈G and g2 ∈G then g1 ◦ g2 ∈G.

• identity: ∃e ∈ G : ∀g ∈ G we have g ◦ e = e ◦ g = g. This identity element is
unique.

• inverse element: ∀g ∈G ∃g−1 ∈G : g ◦ g−1 = g−1 ◦ g = e. For a given element
g, also the inverse element is unique.

• associativity: ∀g1, g2, g3 ∈G : (g1 ◦ g2)◦ g3 = g1 ◦ (g2 ◦ g3)

If in addition ∀g1, g2 ∈G we have g1 ◦ g2 = g2 ◦ g1 then G is called commutative
or Abelian group. If there is a subset G′ ⊆G such that G′ also fulfills the group
axioms, then G′ is called subgroup of G.

1
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A.1.2 Symmetry groups

Crystallography is concerned mainly with spatial symmetries, which are isometric
transformations of space (conserving lengths of vectors and relative angles). Let g
be a transformation

~x 7→~y= g(~x). (A.1.1)

For two transformations g1 and g2 also g3 = g2 ◦ g1 is a transformation defined
by

g3(~x)= g2
(
g1(~x)

)
. (A.1.2)

It is easy to see that with respect to this function composition, the set of all
isometric transformations of space is a group, which is called the Euclidean group.

For a given system, symmetries are such transformations g such that for any
spatially varying quantity f (~x) we have f (~x)= f

(
g(~x)

)
. For instance, f (~x) could be

the electron density of the system. To see that those symmetry operations form
a subgroup of the Euclidean group observe closedness: with ~y = g1(~x) we have
f
(
g3(~x)

)= f
(
g2 g1(~x)

)= f
(
g2(~y)

)= f (~y)= f
(
g1(~x)

)= f (~x), i.e. g3 is also a symmetry.
The identity element is the function e :~x 7→~y= e(~x)=~x, also the inverse elements
exist as the inverse isometric transformations.

A.1.3 Point groups

Point groups are made up of symmetries that leave (at least) one point in space
fixed. Such symmetries can be described by matrices according to g(~x) = M ·~x
(matrix-vector product). In this description, the fixed point is the origin, and M is
an orthogonal matrix (M>M=MM> = 1).
In three dimensions, apart from the trivial identity all possible symmetries can be
classified into the following categories:

i. Inversion
M=

(−1 0 0
0 −1 0
0 0 −1

)
, M ·M= 1

ii. Reflection about mirror plane

e.g. x-y-plane: M=
(1 0 0

0 1 0
0 0 −1

)
, M ·M= 1

iii. Rotation through α= m
n 2π about some axis

For the special choice of the rotation axis lying along z: M=
( cosα −sinα 0

sinα cosα 0
0 0 1

)
n-fold application gives the identity: Mn = 1

iv. Rotation-reflection
Consists of a rotation followed by a reflection about the plane orthogonal
to the rotation axis. This can equivalently be seen as a rotation-inversion
operation about an angle increased by π.
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Only rotations (iii) can result from modifying the identity continuously, thereby
corresponding to physically doable manipulations (rigid motions). Their matrices
have a determinant of +1, and they are called proper operations. All other
operations (apart from the identity) have a determinant of −1 and are called
improper operations.

Neumann’s principle says that any physical property of a crystal must obey all
the crystal’s symmetries, specifically conform to the point group. For instance, if
a crystal has cubic symmetry, then also the elasticity constants have to display
cubic symmetry.

Point groups consisting only of proper operations are called enantiomorphic: they
conserve the handedness of the coordinate system and can therefore support chiral
structures. Point groups that leave more than one point fixed are called polar. As
a consequence of Neumann’s principle, for instance only crystals with polar point
groups can display pyroelectricity, only crystals lacking inversion symmetry can
display piezoelectricity, and only crystals with enantiomorphic point groups can
display optical activity (rotation of polarisation).

There is an unlimited number of point groups (e.g. the point groups of prismae with
regular n-gons as base for all n). However, spatial periodicity (discrete translation
symmetry) is only compatible with n ∈ {2,3,4,6} for rotation(-inversion/reflection)
axes, and equal restrictions hold for the number and arrangement of mirror planes,
leading to 32 different crystallographic point groups, of which 11 are enantiomor-
phic, 11 other are centrosymmetric (as inversion is obviously incompatible with
handedness) and 10 polar (drawn from the non-centrosymmetric point groups).
Here point groups that differ only by a rotated coordinate system are considered
equal.

A crystal is said to have a given point group if there is a point within the unit cell
so thatall the point group’s symmetries are fulfilled with respect to this point, and
if there is no larger such point group.

A.1.4 Translation groups

The spatial periodicity that is the defining property of crystals leads to translation
symmetries: If all of

g1(~x)=~x+~a1 (A.1.3a)

g2(~x)=~x+~a2 (A.1.3b)

g3(~x)=~x+~a3 (A.1.3c)

are symmetries, then g(~x) =~x+n1~a1 +n2~a2 +n3~a3 is a symmetry ∀ni ∈ Z. For
linearly independent ~ai, the set of vectors Λ= {

∑3
i=1 ni~ai|ni ∈Z} are the Bravais

lattice of the crystal. There is a unique densest set Λ (corresponding to the
primitive unit cell), while the lattice vectors ~ai are not uniquely defined, i.e.
different choices of ~ai can result in the same Λ.
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A.1.5 Space groups

The transformation group that includes all symmetries of a crystal is called space
group S. The point group P and the translation groupΛ are subgroups of the space
group. Every element g ∈ S can be written as the composition of an operation that
leaves (at least) one point fixed and a translation:

g(~x)=M ·~x+~d ⇔ g = g~d ◦ gM (A.1.4)

Space groups that have only elements g = g~d ◦ gM with g~d ∈Λ and gM ∈ P are
called symmorphic.

Non-symmorphic space groups result if the symmetries include

• screw axes: rotation around an axis followed by translation along this axis,
with g~d ∉Λ and gM ∉ P, or

• glide planes: reflection about a plane followed by translation along a vector
in this plane, with g~d ∉Λ and gM ∉ P

There are 230 qualitatively different crystallographic space groups in three-
dimensional space. Specifically, in this classification two space groups S1 and S2
are considered equivalent if they differ only by an orientation-preserving affine
transformation of space f , that is, if there is an f (~x) = N ·~x+~s with det(N) > 0
so that for all g1 ∈ S1 there is a g2 ∈ S2 with g2 = f ◦ g1. For instance, f can be
an arbitrary orientation with isotropic scaling, or, in the case of lower-symmetry
groups, also anisotropic scaling and shearing. In contrast, when the condition
det(N) > 0 is dropped, there are only 219 so-called affine space groups in three
dimensions. Thus, there are 11 pairs of crystallographic space groups that differ
only by an inversion, with the simplest example of the tetragonal space groups
P41 and P43, both consisting, apart from the translation group, only of a fourfold
screw axis along z, but with a translation either along (0,0,1/4) or (0,0,−1/4)
for clockwise rotation by 90◦. Those are the so-called 11 enantiomorphic pairs,
constituting the 22 chiral space groups.

There are 92 centrosymmetric space groups, that is, those that possess a point of
inversion. Of course, the chiral space groups do not possess inversion symmetry.
The chiral space groups (that have a notion of handedness already in the space
group operations) together with 43 other space groups make up the 65 so-called
Sohncke groups (sometimes also called enantiomorphic space groups), which are
defined as including only proper operations. Thus, these are the groups that can
support chiral crystals.

Of the 230 crystallographic space groups 73 are symmorphic. The space groups of
Bravais lattices (i.e., when the space group has the highest symmetry compatible
with a given translation group) are always symmorphic. Further, they always
include inversion symmetry.
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A.1.6 Bravais lattices and crystal systems

Point symmetry groups are commonly illustrated in the following way: A unit
sphere S2 is imagined, symbols for rotation(-inversion/reflection) axes are drawn
at the corresponding positions, and great circles are drawn in full lines where
mirror planes intersect. The upper hemisphere is then projected onto the plane
through the equator via a stereographic projection from the south pole at (0,0,−1):

(x, y, z) ∈ S2 7→ (x, y) · 1
z+1

∈R2 (A.1.5)

The degree of rotation axes is given by the rotation symmetry of the symbols,
and additional inversions/reflections are indicated as additional decorations. The
presence of inversion symmetry is denoted by a small circle at the centre, and in
the absence of a horizontal mirror plane the equator is drawn dashed.

Table A.1 illustrates the 14 distinct Bravais lattices in three dimensions, i.e., the
different symmetry groups the translation group Λ can conform to. Specifically,
they are classified into 7 crystal systems according to conditions fulfilled by the
sides a,b, c and angles α,β,γ of the space-filling parallelepipeds1. For some of
those systems, it is possible to add centring operations, i.e., additional translation
operations, that are compatible to the imposed symmetry. Not all of those centring
options lead to new lattices, however, e.g. the face-centred tetragonal lattice is
equal to the body-centred tetragonal lattice with half the volume (analogous for
base-centred and primitive), while for instance adding a base-centring to the cubic
lattice breaks cubic symmetry.

The point group of highest symmetry for each crystal system is given in stereo-
graphic projection, where the pole of the projection lies in the vertical direction,
apart for the monoclinic system. The axes along the body diagonal in the highest
cubic symmetry are six-fold rotation-reflection axes (corresponding to a three-fold
rotation when applied repeatedly). The crystal basis (the motif replicated by the
translations) can have lower symmetry, which will lower the point group symme-
try of the crystal. The number of such subgroups (including the given group of
highest symmetry) there exist in each crystal system that are not also part of a
crystal system of lower symmetry is also given. Note that, for instance, adding
a motif with tetragonal symmetry to a Bravais lattice with cubic symmetry will
result in a crystal with only tetragonal symmetry.2

The order of crystal systems is triclinic ⊆ monoclinic ⊆ orthorhombic ⊆ tetragonal
⊆ cubic, monoclinic ⊆ trigonal ⊆ cubic, trigonal ⊆ hexagonal and orthorhombic ⊆
hexagonal, understood as relations fulfilled by the highest-symmetry point group
of the respective crystal systems.

1Apart for the hexagonal system, where a hexagonal prisma is used to better illustrate the six-fold
symmetry

2And for generic interaction potentials, a tetragonal basis would be expected to perturb the ground-
state Bravais lattice away from exact cubic symmetry.
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primitive face-cent. body-cent. base-cent.

triclinic 2 subgroups

monoclinic
α= γ= 90◦
3 subgroups

orthorhombic
α=β= γ= 90◦
3 subgroups

trigonal
a = b = c
α=β= γ
5 subgroups

hexagonal

a = b
α=β= 90◦
γ= 60◦
7 subgroups

tetragonal
a = b
α=β= γ= 90◦
7 subgroups

cubic
a = b = c
α=β= γ= 90◦
5 subgroups

7 crystal systems 14 Bravais lattices 32 point groups

Table A.1: Crystal systems, Bravais lattices and point symmetries
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A.1.7 Positions within the unit cell

For a given space group, locations within the unit cell can be classified into general
and special positions. General positions x are those that are not invariant under
any symmetry operation (apart from the identity), while for special positions there
are some non-trivial operations that map them onto themselves. For instance, the
centre of inversion is a special position, as well as all positions along rotation axes
and on mirror planes.

The multiplicity of a given position is the number of positions within one unit
cell that are obtained by applying all symmetry operations (and also the centring
operations — so that, e.g., every position in a face-centred spacegroup has a least
a multiplicity of 4). Such sets of positions are said to be related by symmetry.
The multiplicity of special positions is a divisor of the multiplicity of the general
positions, which in symmorphic groups is equal to the number of point group
operations times the number of centring operations.

The locations of special positions within the unit cell are restricted, so that their
location can be specified by at most two real parameters (if they are constrained
to a mirror plane; only one if constrained to the intersection of two planes or to
an axis, and zero degrees of freedom for even higher symmetries). For a given
space group, the different special positions are catalogued, sorted and denoted by
letters, where ‘a’ corresponds to the highest symmetry (there is no consistent way
to do that for all space groups, therefore this nomenclature of so-called Wyckoff
positions has to be looked up, if necessary). Often also the multiplicity is given,
for instance in a face-centred cubic lattice the atoms sit at the special positions
(4a) and in the diamond lattice at (8a). The highest-letter Wyckoff position3 is the
general site with generic position, meaning that its location within the unit cell
is specified by three real parameters, e.g. coordinates with respect to the lattice
vectors. Its multiplicity is the number of elements of the quotient group of the
space group by the (uncentered) translation lattice.

A.2 Crystal structures

For the purposes of this lecture, atoms can be considered as having an ionic core
that is made up of the positive nucleus and filled inner shells. These inner shells
are spherical, and essentially impenetrable, as due to the Pauli exclusion principle
an overlap of the inner shells of distinct atoms would cost a high amount of energy.
The remaining atoms mediate the binding of the solid by metallic or covalent
mechanisms, both of which tend to increase the valence orbital overlaps. The
same holds for the Coulomb interaction in ionic crystals. As a consequence, the
ground-state configuration follows as the optimal compromise between the inner
shell repulsion and the Coulomb or valence-mediated attraction. For this reason,
assigning some radius to a given element (depending on the situation there are
sets of ionic or covalent radii) and modelling structures as being composed of hard
spheres gives in quite a number of cases surprisingly good results.

3Space group 47 (Pmmm) has with 27 Wyckoff positions the largest number, here the general
position is denoted by α or A.
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Important concepts in this respect are the volume filling fraction, which cor-
responds to the relative part of space that is covered by such non-overlapping
spheres, and the coordination number Z, which is the number of neighbouring
atoms a given atom touches when the lattice constants are reduced to the minimal
value.

A.2.1 Elemental systems on Bravais lattices

A.2.1.1 Face-centred cubic

The face-centred cubic (fcc) lattice is one of the most important crystal structures.
The atoms occupy the (4a) positions of the Fm3̄m space group. As a close-packed
structure (see the discussion at hexagonal close-packed and related structures),
it has a volume filling fraction of π/

p
18 ≈ 0.7405 and a coordination number of

Z = 12. The largest holes within such a close-packing of spheres are the octahedral
sites at (4b), situated at (1/2,1/2,1/2) and positions related via face-centring, which
can hold a smaller sphere of radius ro = (

p
2−1)R ≈ 0.414R where R = a/

p
8 is

the radius of the stacked spheres, and the tetrahedral sites at (8c), situated at
(1/4,1/4,1/4) and (3/4,3/4,3/4) and positions related via face-centring, which can
hold a sphere of radius rt = (

p
6/2−1)R ≈ 0.225R. These interstitial sites are

candidates for inserting additional atoms into the structure.

A large number of metals, especially from the late transition groups over the noble
metals, Al and Pb crystallize in this structure, as well as most noble gases. Lattice
constants (i.e., the length of the cube edge) vary broadly from 3.6 Å for Co to 5.0 Å
for Pb.

Its Strukturbericht designation is A1, and its prototype is Cu.

A.2.1.2 Body-centred cubic

This is another crystal structure that is prominent in metals. It is the main
structure for the alkali metals and the transition metals of group 5B and 6B,
as well as iron. The atoms occupy the (2a) positions in the Im3̄m space group.
For such a structure made up of touching spheres the largest holes are at the
tetrahedral sites at (12d), situated at (0,1/4,1/2) and related positions, and can
hold spheres of radius rt = (

p
5/3−1)R ≈ 0.291R with the radius of the stacked

spheres R = a
p

3/4. For discussion below also the (6b) octahedral sites at (0,1/2,0),
(1/2,1/2,0) and related positions shall be mentioned. Note that, in contrast to the
fcc case, these interstitial sites do not display cubic symmetry (i.e., the tetrahedra
and octahedra of near neighbours, after which the sites are named, are not
regular).

Even though its volume fill fraction of π
p

3/8 ≈ 0.6802 and low coordination
number of Z = 8 seem to put this structure in metals at a disadvantage compared
to close-packed structures, the distance to the six second-nearest neighbours along
the cube edges is only 14% longer than to the eight nearest neighbours along the
body diagonal, so that, given the right electronic configuration, to all of those
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fourteen neighbours sizeable binding contributions can be expected. In fact, the
bcc transition metals such as W have significantly higher melting temperatures
than their neighbours. Further, in a number of systems (predominantly in the
early transition metals) one observes a transition from a low-temperature close-
packed structure to a high-temperature bcc phase. This is thought to be due to
the increased vibrational entropy of the bcc phase.

Lattice constants are in the region of 2.9 Å (Fe) and 3.3 Å (Ta) for the transi-
tion metals, while for the alkali metals they increase up to 6.0 Å for Cs. The
Strukturbericht designation of the bcc structure is A2, and its prototype is W.

A.2.1.3 Further examples

There is only a small number of elements that crystallize on a Bravais lattice,
but neither in the fcc nor bcc structure. These include the α-phase of Po with the
primitive cubic Bravais lattice (Strukturbericht Ah), and the high-temperature
β-Po and Hg with the trigonal Bravais lattice. Note that the trigonal lattice results
from the simple cubic lattice by stretching or compressing it along a body diagonal.
For a specific stretching value, the fcc lattice results, while bcc results from a
specific compression. In this sense, β-Po can be seen as slightly distorted bcc
(which in the Strukturbericht is known as Ai), Hg as equally distorted fcc (A10).
Note that while the A7 structure with prototype As (also shown by Sb and Bi) has a
two-atom basis on the trigonal lattice, it can also be seen as primitive cubic lattice
weakly distorted along a body diagonal, with the atoms alternatingly displaced
along this dimension. Further, In crystallizes in the body-centred tetragonal
lattice, which can also be seen as an fcc system where one cube edge is elongated
by 8%.

A.2.2 Non-Bravais elemental systems

A.2.2.1 Close-packed structures

Consider a sheet of hexagonally arranged, touching spheres. This is a two-
dimensional Bravais lattice, spanned by ~a1 = a(1,0,0) and ~a2 = a(−1/2,

p
3/2,0).

The gaps between these spheres do not form a Bravais-lattice, however: Their lat-
tice has two sites per cell at (~a1 +2~a2)/3 and (2~a1 +~a2)/3. Putting spheres directly
over one those family of gaps, for instance at the positions~c1 = (~a1+2~a2)/3+(0,0, c′),
gives again a sheet of hexagonally arranged spheres. Iterating this construction
to infinity gives a Bravais lattice with ~a3 =~c1. For the specific choice of c′ =p

2/3a
spheres in successive sheets are touching, and in this case the resulting Bravais
lattice is just the face-centred cubic lattice in a primitive description with respect
to a non-standard coordinate system. Projecting the sheets down to a basal plane,
the lattice sites come to lie on three different two-dimensional Bravais lattices,
corresponding to α, β and γ configurations, so that the fcc stacking corresponds to
the αβγαβγ . . . sequence.

If, however, planes are displaced alternatingly by~c1 and~c2, leading to αβαβ . . .
stacking, the third lattice vector is ~a3 = (0,0, c) with c = 2c′. The corresponding
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lattice belongs then to the hexagonal crystal system and is called the hexagonal
close-packed lattice (hcp). Of course, the packing fraction depends only on c′, so
that for the specific choice of c/a = 2c′/a =p

8/3 ≈ 1.6330 the packing fraction is
equal to π/

p
18 ≈ 0.7405 as in the case of the fcc lattice, as well as its coordina-

tion number of Z = 12. Further, the sequence αβαγαβαγ . . . gives the so-called
double hexagonal close-packed lattice (dhcp), with four sites per unit cell. Note
that both hcp and dhcp lattices have the same space group P63/mmc. With the
standard convention of in-plane lattice vectors ~a1 and ~a2 enclosing a 120◦ angle
and ~a3 perpendicular to them, the highest-symmetry Wyckoff positions are (2a) at
(0,0,0) and (0,0,1/2), (2b) at (0,0,1/4) and (0,0,3/4), and (2c) at (1/3,2/3,1/4) and
(2/3,1/3,3/4). In the hcp-lattice the (2c) sites are occupied, in the dhcp both (2a)
(having local cubic symmetry) and (2c) (with hexagonal symmetry).

Both tetragonal and octahedral interstitial sites in the fcc lattice are between two
close-packed planes. This motif is common to all close-packed structures, therefore
also the interstitial sites are the same. Note also that only the Bravais case is
potentially compatible with cubic symmetry, and therefore only in this case there
is a reason that c should be exactly related to a.

A large number of elements crystallize in the hcp structure, predominantly early
transition metals, rare earths, Be and Mg. In all these cases, 1.56 ≤ c/a ≤ 1.63,
i.e. the model of close-packed spheres is followed well. In contrast, Zn and Cd
have c/a-values of 1.86 and 1.89, respectively, but still their structure is said to be
hcp, as it has the same symmetry. The dhcp structure is displayed by the early
Lanthanides from La through to Pm as well as the trans-uranium elements Am
to Cf, and all of those have a c/a that agrees with the ideal one within 2.5%.

The Strukturbericht designation of hcp and dhcp is A3 and A3’, respectively, and
their prototypes are Mg and αLa.

A.2.2.2 Tetrahedrically coordinated structures

The sp3-hybridisation of C corresponds to a local tetragonal coordination, which is
fulfilled by the diamond structure: It consists of two fcc lattices that are displaced
by a quarter of a cube diagonal. Equally, it can be obtained by taking a four-
atom supercell of the bcc lattice and removing two of those atoms. Therefore, its
coordination number as well as its packing fraction are half of the bcc packing
values, which demonstrates that for covalently bound crystals dense packing is of
no importance.

The two sites in this structure are related by symmetry, that is, they are the (8a)
sites in the Fd3̄m space group. C, Si, Ge and Sn, i.e. all elements in group IV apart
from Pb, display this structure (C and Sn also display different structures). The
prototype is the diamond modification of C and the Strukturbericht designation is
A4.

Just as a tetrahedrically coordinated structure can be obtained from the close-
packed fcc lattice by translating it so that the sites of the copy fall into tetrahedral
voids between the sites of the original lattice, the same can be done for any close-
packed lattice by translating it along the normal of the close-packed planes. Taking
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the hcp lattice as original lattice, the resulting structure is called lonsdaleite
(hexagonal diamond). It occurs as a modification of C and Si, and it has four atoms
per unit cells. Note that, as with the non-fcc close-packed structures, there is no
symmetry operations that relates the in-plane to the out-of-plane dimensions, so
the tetrahedral coordination is in general fulfilled only to good accuracy, but not
exactly. Just as in the case of the A7 structure discussed above, here symmetry
does not constrain the atomic positions completely. Specifically, in addition to the
unit cell dimensions a and c the atomic positions in the P63/mmc space group
at the (4f) positions (1/3,2/3, z), (2/3,1/3,1/2+ z), (1/3,2/3,1/2− z) and (2/3,1/3,−z)
possess another degree of freedom z.

A.2.2.3 The graphite structure

The thermodynamical ground-state of C is hexagonal graphite. Its sp2-hybridiza-
tion corresponds to three-fold coordination, which is provided within planes of
hexagonal honeycombs. These planes are then stacked in two-fold alternation,
with a much larger separation between the planes than the within-plane nearest-
neighbour distance, which leads to graphite being the element with the largest
anisotropy in its properties. Again in the P63/mmc space group the atoms occupy
the Wyckoff positions (2b) at (0,0,1/4) and (0,0,3/4), and (2c) at (1/3,2/3,1/4) and
(2/3,1/3,3/4), thus the (2b) atoms have other (2b) neighbours in the planes above
and below, while the (2c) atoms do not. Note that it is actually also possible
that the planes are slightly buckled, with the (2c) atoms being shifted along the
z-dimension with respect to the (2b) atoms, lowering the space group symmetry to
P63mc. The prototype of hexagonal carbon is the graphite modification of C and
the Strukturbericht designation is A9.

Further, specifically under mechanical load hexagonal graphite (also called α-
graphite) can transform to the metastable form of rhombohedral graphite (β-
graphite) with space group R3̄m. The relation between those two forms is the
same as between hcp and fcc: in β-graphite, the (optionally buckled) planes have
a three-fold repetition compared to the two-fold repetition in α-graphite, so that
each atom has exactly one out-of-plane neighbour either above or below it. The
primitive unit cell has only two atoms, and it is actually the same structure as A7
discussed above, only with a much larger distortion along the body diagonal with
respect to the simple cubic structure than in As, the prototype of A7.

A.2.2.4 Further remarks

Overall, there are about twenty more structures in the Strukturbericht A-series
(denoting elemental systems), which will not be discussed here in detail. Only a
few concluding remarks shall be given:

For B, local icosahedral configurations are energetically preferred. They do not fit
well into a regular lattice, however, so that B has three common allotropes with
large unit cells and approximately equal energies.

Mn is a quite flexible atom, it displays a large number of oxidation states. As
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a consequence, its two low-temperature ambient-pressure phases (large cubic
cells with 29 and 20 atoms, respectively) are rather described as intermetallic
compounds, as Mn atoms on different Wyckoff positions have different electronic
configurations. For instance, some of those sites host atoms that couple antifer-
romagnetically, while the atoms on other sites do not have a magnetic moment
at all. At higher temperatures a body-centred tetragonal and finally a bcc phase
follow, before sample eventually melts.

Also the actinides, specifically U, Np and Pu display complex phase diagrams with
often large unit cells. Specifically Pu has six ambient-pressure phases, the reasons
for which are not yet fully understood.

Finally also the non-metals can display very complicated structures, e.g. Se with
a 64-atom primitive cell and S with a 32-atom primitive cell.

A.2.3 Ordered compounds

Systems consisting of more than one species of atoms can develop an ordered
arrangement, where different sublattices (corresponding points in different primi-
tive cells) are occupied by a different elemental make-up. Such systems are called
ordered compounds. In the prototypical examples each sublattice is considered
to be occupied by atoms of a single species, while, as will be seen later, in reality
some degree of occupational disorder is to be expected. Ordered compounds are
to be distinguished from alloys, which in the strict sense are multi-component
systems without sublattices distinguished by elemental composition.

A principle that is often fulfilled by ordered compounds is to allow as much
nearest-neighbour pairs of non-equal atoms as possible. This is because systems
that crystallize as ordered compounds are those where such unlike pairs are
energetically favoured, while systems where such pairs are disfavoured would
display phase separation. This principle is fulfilled clearly for ionic compounds (see
discussion there). Some important principles that determine ordered structures
are discussed in the following, where the distinctions are not exclusive.

A.2.3.1 Superstructures

A large number of important ordered structures can be obtained by taking a
fundamental lattice such as those discussed in A.2.1 and A.2.2, possibly enlarging
the unit cell, and occupying the so-obtained sublattices by different elements.

For the simple cubic lattice Ah the so-obtained structure is the B1 structure, also
called NaCl-structure due to its prototype. It consists of two face-centred cubic
sublattices stacked into each other, so that each atom has six nearest neighbours
of the other element. Analogously, taking the primitive orthorhombic Bravais
lattice as fundamental lattices and occupying the lattices alternatingly gives the
B24 structure with TlF as prototype.

Taking the body-centred cubic lattice as underlying lattice, a large variety of
structures can be obtained in this way. Stacking four differently occupied face-
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Wyckoff position of F4̄3m nearest neighbours of prototype
(4a) (4b) (4c) (4d) A B C

C1b A B C - 4C 4C 4A+4B MgAgAs
C1 A - C C 8C 4A CaF2
L21 A B C C 8C 8C 4A+4B Cu2MnAl
B32 A B A B 4A+4B 4A+4B NaTl
B2 A A B B 8B 8A CsCl
A2 A A A A 8A W

Table A.2: Superstructures of the A2 lattice, corresponding to sublattices at the
Wyckoff positions (4a) at (0,0,0), (4b) at (1/2,1/2,1/2), (4c) at (1/4,1/4,1/4), and (4d)
at (3/4,3/4,3/4) of the cubic face-centred space group F4̄3m.

centred cubic sublattices inside each other gives the structures as defined in Table
A.2. The L21 structure is the (full) Heusler structure with many intermetallic
examples, and in analogy C1b is termed the half-Heusler structure. D03 with
prototype Fe3Al is actually the same structure as L21, but where the (4b) sublattice
is also occupied by C. Note that the L21 structure can also be understood as an fcc
lattice of A atoms, where the octahedral sites are filled by B and the tetrahedral
sites by C. C1 is also called the fluorite structure and has predominantly covalently
bound representatives (e.g., many fluorites and oxides). The two C sublattices in
L21 and C1 together constitute a primitive cubic lattice, which also holds for the A
and B sublattices in B2, while in B32 they constitute two diamond lattices. Thus,
apart from C1b all those structures have higher symmetry than F4̄3m.

The face-centred cubic lattice hosts triangles of nearest neighbours. Therefore
there is no way to occupy neighbouring lattice sites alternatingly as in the case
of B1 and B2. Here the most prominent example of a superstructure is the
L12 structure with Cu3Au as prototype, where the cube corners are occupied by
one element and the cube faces by the other, so that each Au atom has 12 Cu
neighbours, while each Cu atom has 4 Au and 8 Cu neighbours. This structure
has the primitive cubic symmetry. Breaking this symmetry by stretching or
compressing one of the three cube edges gives tetragonal symmetry and the L60
structure with prototype Ti3Cu. Tetragonal symmetry also results when the
(100) planes containing both elements are alternatingly shifted by half a face
diagonal with respect to each other, giving the D022 structure with TiAl3 as
prototype, or the D023 structure with ZrAl3 as prototype when pairs of two of
those planes are shifted. Further, superstructures with AB stoichiometry are
obtained when (100) planes are alternatingly occupied by different elements (L10
structure, prototype CuAu, tetragonal symmetry, each atom has 4 equal and 8
unequal nearest neighbours) or doing the same for (111) planes (L11 structure,
prototype CuPt, trigonal symmetry, each atom has 6 equal and 6 unequal nearest
neighbours).

For the tetrahedrically coordinated structures the B3 structure (also called zinc-
blende structure, prototype ZnS) results from occupying the two fcc sublattices that
make up the diamond lattice by different elements, analogously lonsdaleite’s two
hcp sublattices to get the B4 structure (wurtzite structure, with the corresponding
modification of ZnS as prototype). These are the main structures for predominantly
covalently bound group III-V semiconductors and insulators, where in both cases
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each atom has 4 unequal neighbours.

Finally, by occupying alternating close-packed planes by different atoms the Bh
structure (prototype WC) results from the hcp lattice, and the B81 structure
(prototype NiAs) results from the dhcp lattice. Here each atom has 6 equal and 6
unequal neighbours with respect to the underlying close-packing, but actually for
instance in the prototypical tungsten carbide c/a ≈ 0.98, so that a more realistic
view is that each atom has 6 close neighbours of opposite kind and 8 farther
neighbours of the same kind. Occupying the close-packed planes in hcp (stacking
αβαβαβ) in a AABAAB-fashion gives the C7 structure (prototype MoS2), and
taking a close-packed structure with αβγβγ stacking repetition and ABAAB
occupation repetition gives the D513 structure with prototype Ni2Al3.

A.2.3.2 Structures by filling interstitial sites

Another way to derive ordered structures is to take a given simple structure
and fill some interstitial sites by atoms of another kind. Interstitial compounds
in the strict sense of the term, also call Hägg phases, are those where metallic
atoms constitute an underlying structure and small atoms, such as H, B, C and
N, fill interstitial sites. Characteristic for those compounds is a strict maximum
content of the interstitial species (corresponding to a filling of all available sites),
while the phases are often stable under some interstitial deficiencies. Due to
the (mostly covalent) binding introduced by the interstitial species, in addition
to the metallic binding on the host lattice, these compounds are often hard: for
instance Ta50+xC50−x is the solid with highest melting temperature of 3985 ◦C at
a C deficiency of x = 3 and an existence region from x = 0 to 13. Its B1 structure
can be seen as fcc where all octahedral sites are filled by the other element.
Analogously, the B3 and C1 structures are just fcc structures with half or all of
the tetrahedral sites filled, respectively, and the B81 structure is a hcp structure
with all octahedral sites filled.

New structures obtained by filling interstitial sites are the C3 cuprite structure
with prototype Ag2O resulting from an fcc lattice where just two diagonally
opposite tetrahedral sites are filled, which keeps cubic symmetry. Taking a B2
structure and filling the face centres (half of the octahedral sites) by a third
element gives the E21 cubic perovskite structure with prototype CaTiO3 displayed
by many oxides. The larger Ca sites have 12-fold oxygen coordination, while the
smaller Ti sites have only 6-fold oxygen coordination. Leaving the Ca sites empty
gives the D09 structure with prototype α-ReO3.

Taking a hexagonal close-packed structure and inserting a two-dimensional honey-
comb lattice between every second pair of close-packed planes so that the inserted
sites coincide with two thirds of the octahedral holes gives the D05 structure (BiI3).
Filling all octahedral sites on every second interstitial plane gives the C6 struc-
ture (prototype CdI2, also called trigonal ω phase), while doing the same for the
face-centred cubic structure gives the hexagonal C19 structure (with the elemen-
tal prototype α-Sm, but e.g. CdCl2 as a more typical representative). In typical
systems displaying those structures the inserted planes mediate a strong binding
between their respective neighbours, while the binding between the planes with
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the non-occupied holes is weak, leading to easy cleaving. On the other hand, re-
ducing the distance between the weakly-bound planes in the trigonal ω structure
to zero leads to a stacking of honeycomb planes and close-packed planes, which
is called the hexagonal ω phase or C32 structure (prototype AlB2), and which is
rather described as primitive hexagonal lattice where the centres of all triangular
prismae are occupied.

A.2.3.3 Coordination-maximizing structures

Specifically for metals, the Coulomb interaction between the conduction electrons
and the ionic cores favours high densities of the electron gas, while the exact
configuration of the atoms is only of secondary importance. This reasoning moti-
vates the preference for dense packings. For elemental systems, the solutions to
this problem are the comparatively simple close-packed structures. However, for
systems composed of multiple elements with ionic cores of different sizes, a large
variety of structures results. An underlying principle here is the maximization
of the coordination numbers, motivated by the observation that high numbers of
nearest neighbours per site exclude holes in the structure and therefore corre-
spond to efficient packing, while the concept of an ionic core’s size in a metal is not
well defined. Structures that have only tetrahedral interstitial voids (i.e., where
all larger voids are filled) are called topologically close-packed or Frank-Kasper
phases. Note that the attribute “topological” shall imply some looseness on the
order of 10% when counting the number of closest neighbours.

A prototypical example is the cubic A15 phase with prototype Cr3Si. Here the
Si atoms sit at the sites of a bcc lattice, and the Cr atoms occupy half of the
tetrahedral voids, such that on a given face for instance the sites (0,1/2,1/2±1/4)
are occupied. In this way, Si has 12 Cr neighbours, while Cr has 4 Si neighbours
and additionally 2 Cr neighbours about 10% nearer and 8 Cr neighbours about
10% farther, giving an effective coordination number of 14.

Another important class of topologically close-packed structures is the Laves fam-
ily. Its cubic C15 member with prototype MgCu2 has Mg on a diamond lattice and
Cu on corner-sharing tetrahedra centred around the diamond lattice’s tetrahedral
voids, i.e., those empty sites that, if filled, would transform the diamond lattice to
bcc. Mg consequently has 12 Cu neighbours and 4 Mg neighbours about 5% farther
away, while Cu has 6 Mg neighbours and 6 additional Cu neighbours 15% nearer.
This principle of filling the tetrahedrical voids within tetrahedrically coordinated
underlying structures by corner-sharing tetrahedra can of course also be applied
to the Lonsdaleite structure (with αβαβ-stacking), giving the C14 structure with
prototype MgZn2, and to a structure with αβαγ-stacking, giving the C36 structure
(MgNi2). For those two hexagonal Laves phases the internal degrees of freedom
are typically very close to the ideal ones.

The tetragonal D8b structure (also called σ-phase) with FeCr as prototype has a
large technological relevance. As is common for intermetallic topologically close-
packed structures, it is very brittle and therefore undesirable in steel metallurgy
(sigma phase embrittlement). It has 30 atoms per cell on 5 inequivalent sites with
coordination numbers 12, 14 and 15. Finally, the low-temperature α and β phases
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of Mn (structures which are also displayed by multicomponent systems) can also
be considered as topologically close-packed structures, with coordination numbers
from 12 to 16.

A.2.3.4 Structures with preferred covalent configurations

For systems with significant covalent interactions, structures with characteristic
local motifs can be preferred. This includes the large family of octahedron-based
minerals, with many members among the oxides, sulfides, fluorides and chlorides:

The simplest such structure is D09 mentioned already above, which consists
of corner-sharing ideal octahedra with another element at the octahedron cen-
tres. Tilting those octahedra gives the cubic D02 (prototype CoAs3) skutterudite
structure, where the Co atoms are still nearly ideally octahedrically coordinated
to As, while As has additional to the two Co atoms also two As neighbours in
approximately the same distance.

The cubic C2 pyrite structure (prototype FeS2) can be derived from the C1 struc-
ture by shifting the S atoms from the tetrahedron sites within the Fe fcc lattice
through the centre of one of the tetrahedron’s triangular faces. In this way, the
eight-fold coordination of Fe is broken down to a skewed octahedron, while S has
now three Fe neighbours and in addition another S neighbour in approximately
the same distance. In the C4 rutile structure (prototype TiO2) the Ti atoms sit
on a body-centred tetragonal lattice, and the O atoms are at the centres of the
resulting Ti-triangles, so that Ti has 6 O neighbours in a stretched octahedral
configuration, while O has 3 Ti neighbours.

The backbone of the cubic H11 spinel structure (prototype Al2MgO4) is a face-
centred cubic lattice of O. One eighth of the tetrahedron sites are occupied by Mg,
making up a diamond lattice, while Al occupies half of the octahedron sites so that
it forms tetrahedra centred around the the fcc-tetrahedron voids not occupied by
Mg. As a result, Mg is coordinated by a tetrahedron of O, Al by an octahedron of
O, and O has one Mg and 3 Al as neighbours, where actually the distance to Mg is
shorter due to a small distortion of the O fcc lattice.

As an example for crystal structures with a different defining local motif the
B20 structure (prototype FeSi) shall be discussed. It conforms to the cubic P213
space group and has both elements on (4a) sites with different internal degrees of
freedom. It can be considered as a NaCl-structure where the atoms are displaced
along the body diagonals. For an ideal choice of internal parameters, each atom
has 7 unlike neighbours and 6 like neighbours about 15% farther away.

A.2.3.5 Ionic compounds

In contrast to general systems, ionic systems are a special case where the re-
sulting structure can be understood quite easily. The model is that the metallic
constituents release an integral number of electrons, which are accepted by the
non-metallic atoms. In itself, this costs energy, i.e., the ionization energy of the
metal is in general higher than the binding energy of the electron at the non-metal,
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so that for isolated atoms this would not happen. However, bringing the ions into
contact releases Coulomb energy, leading to a positive binding energy.

Specifically the alkali halides, consisting of an alkali metal and a halogen in
equiatomic fractions, provide a nice example. Here one electron is transferred,
leading to noble gas configuration on both constituents. The resulting ions can be
considered as charged soft spheres: at short distances, once their electron clouds
penetrate each other, they experience a rapidly increasing repulsive potential due
to the Pauli exclusion principle, while at larger distances the Coulomb interaction
dominates.

Most of the alkali halides crystallize in the B1 structure, with the exception of
CsCl, CsBr and CsI, which have the B2 structure. The remarkable fact is now
that it is possible to assign an ionic radius to each element so that the lattice
constants of 14 among the 20 compounds are predicted accurately within 2% by
requiring cations and anions to touch. The remaining 6 compounds are those
where the anions are so much larger than the cations that they would be nearly
touching or actually overlapping. In fact, predicting the lattice constants of the
systems that would have overlapping anions so that the anion pairs instead of
the nearest-neighbour cation-anion-pairs touch again gives an agreement with
measured lattice constants within 2%.

In the II-VI-compounds larger ratios between anion and cation radii occur, specifi-
cally for the Be-compounds and MgTe. These systems display the tetrahedrically
coordinated B3 or B4 compounds: Even though the Coulomb energy at given
nearest-neighbour distance (i.e., the Madelung constant) is significantly smaller
for those structures than for B1 or B2, the lower coordination allows for smaller
nearest-neighbour distances. Apart from those B3 and B4 systems, where the
covalent nature of the binding begins to prevail, ionic radii can predict lattice
constants equally well as in the case of the I-VII-compounds.

A.3 Point defects

In reality, materials deviate from the ideal crystal structures discussed in Section
A.2. If the region of disturbance is confined to a compact domain, a mapping of
atoms to lattice sites remains unambiguous. Such types of defect are called point
defects or zero-dimensional defects. One- and two-dimensional defects, where a
global assignment of atoms to lattice positions is not possible any more, will not
be covered here.

Here isolated point defects will be discussed, where in some cases even questions
of their qualitative properties are not yet settled. They can be naturally classified
according to the number of atoms within a region that encompasses the defect,
compared to the ideal number within this region. If an atom is missing, the defect
is called single vacancy (or vacancy cluster for more missing atoms), if there is
an additional atom, it is called interstitial atom (or cluster for multiple atoms).
Compact defect configurations with the correct number of atoms are typically
unstable and annihilate immediately, they are only realized as intermediate
states during diffusion events (see there). In ordered compounds there is a third



18 CHAPTER A. CRYSTALS

possibility of intrinsic defect (i.e. defects that form as excitations of the ideal
atomic arrangement due to thermodynamics, see below), where a site that should
be occupied by an atom of element A is occupied by B. This type of defect is called
antisite, and the wrong atom is called anti-structure atom. Impurities of foreign
elements are a type of extrinsic defect (those that do not form spontaneously), they
can be incorporated either as substitutional defect, where they occupy a regular
lattice site, or as interstitials.

Obviously, an isolated point defect destroys translation symmetry. However, point
group operations that have the position of the defect as fixed point are still possible.
Therefore, the point symmetry is a distinctive feature of a defect. It depends on
how the atoms in the vicinity of a point defect relax their position to accomodate
the inserted or removed atom.

A.3.1 Formation energies, entropies, and volumes

The appropriate framework for discussing the energetics of intrinsic point defects
are their formation energies4. They are defined as the (necessarily positive) energy
differences between the unperturbed crystal and a crystal with a single point
defect. The constraint of mass conservation in experiments introduces subtleties
to this issue:

Consider first a calculational method that assumes periodic boundary conditions
(i.e. no crystal surfaces) and that can compute the internal energy for systems
composed of an arbitrary number of atoms. For simplicity, we restrict ourselves to
the case of an elemental system on a Bravais lattice. Let EN

id be the total internal
energy for an ideal system with N atoms and observe that EN

id/N = E1
id = E0. If

EM
vac is the total internal energy for a system consisting of M atoms on M +1

sites (i.e. including one vacancy), then the vacancy formation energy follows as
Ef

vac = EM
vac −M ·E0. Similarly the self-interstitial formation energy is given by

Ef
int = EM

int − M ·E0, where EM
int is the energy of a system of M atoms on M −1

sites.

In reality, however, any crystal is finite, therefore surface energy contributions
have to be considered. In general, surfaces are not ideally flat, but display terraces
where halflayers of atoms end. Further, also these terraces are not ideally linear,
but have kinks, where half-columns of atoms end. The last atom of such a half-
column is said to be in Halbkristalllage, as (for the Bravais case) it has exactly
Z/2 occupied neighbouring sites and Z/2 unoccupied neighbouring sites. For short-
range interactions, inserting an atom at such a special site does not change the
surface contributions to the thermodynamics of the sample, which can be seen by
observing that the number of atoms embedded in a surface layer, at a terrace, and
at the kink is the same before and after inserting the last atom. Note that this is
not the case when, for instance, adding an atom onto a complete layer.

4Note that the internal energy is the thermodynamic potential at fixed volume, while the enthalpy is
the potential at fixed pressure. In a strict sense, formation enthalpies would be the relevant quantities,
as experimentally a sample rarely has a fixed volume, but rather relaxes its volume under given
external pressure. Still, I will call it sloppily formation energy, to be understood as the energy at
the optimally relaxed volume, which is equal to the formation enthalpy at p = 0, which in turn is
approximately equal to the enthalpy at ambient pressures due to the large bulk modulus of solids.
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Experimentally, the vacancy formation energy can now be understood as removing
an atom from the bulk and inserting it in Halbkristalllage, and the self-interstitial
formation energy by removing it from there and squeezing it into the bulk. In
a simple example where the internal energy of a crystal is given by nearest-
neighbour pair potentials, the vacancy formation energy corresponds therefore to
the breaking of Z/2 nearest-neighbour bonds.

Just as with energies, also the relaxed volume changes when a point defect is
introduced, corresponding to its formation volume: Ωf

vac =ΩM
vac −M ·Ω0, where

Ω denotes the volume of smallest internal energy, equivalently for interstitials.
The formation volume of point defects are in general positive, i.e. by removing an
atom from the bulk the crystal shrinks not so much as to make up for the increase
in volume when inserting the atom at the surface, leading to vacancy formation
volumes of about 0.5Ω0. This holds also for self-interstitials, the local strains
give a crystal expansion that is typically larger than the atomic volume, giving
formation volumes on the order of Ω0, where these values are still subject to large
uncertainties.

Finally, point defects also have an associated formation entropy, which means that
the number of states within a given excitation energy can be different from the
ideal structure. The most relevant contribution here is from vibrational excitation.
For instance, the less tightly bound neighbours of a vacancy will experience
lower restoring forces and thereby cover larger volumes of phase space at a given
temperature. This would increase the entropy of a crystal with a vacancy over the
value for the perfect crystal, corresponding to a positive entropies.

For ordered compounds the situation becomes more complicated. Here the require-
ment of atom number conservation together with fixed proportions of sites on the
respective sublattices allow point defects to be generated only in combinations.
As a consequence, only those combinations of point defects have well-defined
formation energies, as will be discussed in detail below.

Extrinsic point defects can only be generated by particle exchange with the outside.
As a consequence, their formation energies depend on a chemical potential that
has to be defined in some way. For instance, a sensible choice for H interstitials is
to compare the energy of the ideal crystal and a H2 molecule with the situation
when the two H atoms are dissolved.

A.3.2 Vacancies

The high symmetry that is generally displayed by metallic structures carries
over to their vacancies. As a rule, when removing an atom from the bcc or fcc
structure the full cubic point symmetry around the previous position of the atom
is conserved (at least, this assumption is seldom questioned). This constrains the
relaxations of the neighbouring atoms: for instance, as there are rotation axes
along 〈100〉, 〈110〉, and 〈111〉, all atoms that are related by one of those directions
to the vacant site (which includes the first three neighbour shells in bcc and the
first two in fcc) can only relax longitudinally.

The same holds for simple ordered compounds such as B1 or B2. It also holds for
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vacancies on the B-sublattice of an L12-system with A3B-composition, as these
sites display the full cubic symmetry. However, the A-sites have only tetragonal
symmetry also in the ideal crystal, therefore A-vacancies cannot have higher
symmetry. Analogously, the sites in the cubic B20 structure have only a trigonal
point symmetry, therefore the relaxations are only weakly restricted by symmetry.

In non-metallic systems the situation can be more complicated. In the diamond
lattice of Si, the sites have tetrahedral point group symmetry. Depending on the
charge state of the vacancy (which is an additional parameter in non-metallic
systems), it has different configurations as predicted by recent calculations and
partially already known from experiment. For a doubly positively charged vacancy,
tetrahedral symmetry is retained. For charge states +1 and 0, the two neighbour
pairs of the vacancy are shifted outwards along 〈100〉, resulting in tetragonal
symmetry. At charge state −1, the symmetry is still lowered to orthorhombic by
different lengths of those two neighbour pairs (while their 〈011〉-orientation is
kept). Finally, at charge −2, trigonal symmetry along 〈111〉 is predicted by starting
again from the unrelaxed case and moving one neighbour of the vacancy halfways
towards the vacancy, resulting in the so-called split-vacancy configuration.

Apart from cases such as the split-vacancy configuration, relaxations around
vacancies are typically on the order of a few percent of the nearest-neighbour
distances for the nearest neighbours. A priori, both inward as well as outward
relaxations are possible. The relaxation distances decay rapidly with the distance
from the defects. Macroscopic elasticity theory predicts a decay with r−2 at large
r, converging to some value of volume change corresponding to the formation
volume.

In elemental systems, the vacancy formation energies roughly scale with the
melting temperature. Typical values are 0.6eV for Al, 1.1eV for Cu, and 3.4eV
for W. The relation between vacancy formation energy and melting temperature
leads to the empirical rule of thumb of a vacancy concentration of about 10−4 per
atom at the melting temperature.

In compounds with ionic character, an isolated vacancy necessarily has a charge.
Therefore, in these systems there is a tendency for defects of opposite charge to
appear in combination. In order to explain experimental vacancy concentrations,
also for metals the existence of divacancies in equilibrium at high temperatures
has been proposed since the 1970s, but only recently convincing counterevidence
has been put forward (see discussion in A.5.1). Only in very non-equilibrium
situations, such as in a nuclear reactor, irradiation-induced vacancies can condense
to microvoids in order to reduce the internal surfaces.

A.3.3 Interstitials

When an additional atom is inserted into a structure, one could assume that it is
accomodated in one of the voids between atoms imagined as touching spheres, as
was discussed under the term “interstitial sites” in Section A.2. For small impurity
elements such as H, B, C, and N, this is what actually happens, leading to the
Hägg phases discussed above, where the lattice backbone is not much affected
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by the occupation or non-occupation of a given interstitial site. However, for
self-interstitials, where the excess atom is of the same element as those making
up the lattice, the available space is typically too small, so that this picture is
qualitatively not correct any more.

For structures of high symmetry such as bcc and fcc, often configurations that keep
a symmetry axis are metastable. This means that they are local minima of the
energy as function of the atomic positions. Here one can distinguish whether there
is an atom at the point symmetry centre (which is then at an interstitial site) or
there is no atom at the centre (which is then at a lattice site). As mentioned above,
the first case is often realized for small impurities, for instance C in bcc-Fe occupies
the octahedral sites (which, as discussed above, have actually only tetragonal
symmetry) with large outward relaxations of the two nearest neighbours in 〈100〉
direction.

For self-interstitials, the excess atom typically shares a lattice site symmetrically
with another atom, so that the point symmetry centre is at the lattice site. Such
a configuration is called dumbbell. In fcc systems, the configuration with lowest
energy is typically the 〈100〉-dumbbell with tetragonal symmetry. In bcc systems,
it is generally the 〈111〉-dumbbell with trigonal symmetry (actually a crowdion, see
below), with the important counter-example of α-Fe, where magnetic interactions
favour the 〈110〉-dumbbell with orthorhombic symmetry.

As in the case of vacancies, for the diamond lattice with Si as example the situation
is more complicated. Here calculations cannot resolve the energy differences
between the low-symmetry 〈110〉-dumbbell and the “hexagonal” configuration
(halfways between two tetrahedral sites, with a 〈111〉 rotation axis and trigonal
symmetry), with the tetrahedral configuration closely following.

Due to the dense packing in metallic systems, a self-interstitial atom leads to large
local strain in the lattice and has therefore a large formation energy, typically
a few times the formation energy of a vacancy. This is the value predicted by
calculations, while the corresponding small equilibrium defect concentrations
render experimental determinations of the formation energy impossible. In fact,
self-interstitials in metals are only relevant in irradiation studies. In more open
structures such as the diamond lattice, the energy difference between vacancies
and self-interstitials is smaller. While also here self-interstitials are much less
numerous in equilibrium than vacancies, their small migration energies can make
them relevant for diffusion (see the discussion in Sect. ??).

In this context, also the crowdion shall be mentioned. Similar to a dumbbell, it has
an axis of orientation, but in this case it is oriented along a close-packed direction
(i.e. 〈110〉 in fcc and 〈111〉 in bcc). Because of the close-packing, the number of
atoms with significant shifts in this direction is larger than in the dumbbell-case.
It has been proposed as a means for very rapid diffusional motion along its axis.
This is because there would be virtually no energy difference when the defect
migrates, as the large extent of the moving column smooths the interactions with
the non-moving neighbours. For bcc systems, this indeed seems to be the case.
Around the 1970s, it was assumed to be active also in fcc systems in parts of the
scientific community, although in recent times it has fallen out of favour.
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A.3.4 Substitutional defects

The third type of point defects are substitutional defects, where a site is occupied
by a wrong species of atom. Introducing impurities of comparable size as the
constituent atoms into a system will in general lead to their being incorporated
into the host lattice. Qualitatively, for aspects such as local relaxations and
symmetry breaking the same holds as for vacancies. A quantitative definition
of formation energies would require the choice of a reference state. As will be
derived later, the temperature-dependent terminal solubility in phase diagrams
directly gives the formation energies of these defects, and the wide variation of
such solubilities in different systems and therefore of the formation energies can
be rationalized in terms of chemical and geometrical compatibilities.

The empirical Hume-Rothery rules predict that solubilities are large if

• the atomic radii of solvent and solute do not differ much (a typical critical
value is 15%)

• the solute has the same or higher valency than the solvent

• the electronegativities are comparable (otherwise intermetallic phases are
formed)

• the crystal structure of pure solvent and solute are the same.

The latter two rules are relevant for the central regions of the phase diagram,
which will be discussed later. For the case of small solute concentrations, where
the image of isolated impurities is appropriate the former two are relevant.

In ordered compounds, placing atoms of a constituent species on a wrong sublattice
gives another kind of substitutional defects. This case is discussed in the following.

A.3.5 Point defects in ordered compounds

Ordered compounds have at least two constituent species and at least two sub-
lattices, each of which is ideally occupied by only one species. For simplicity we
will assume in the following discussion a binary compound consisting of species
A and B in ideally equiatomic composition with the corresponding sublattices α
and β, each having one site per primitive cell, with the B1, B2, or B3 structures
as exemplary representants.

In ordered compounds, three additional issues with respect to point defects com-
pared to the case of elemental systems on Bravais lattices arise: First, there
are substitutional point defects with intrinsic reasons, namely when an A and
a B atom exchange their sites as a thermal excitation. Second, when deviating
from stoichiometry extrinsic point defects comprising only constituent species
result. And finally, the fixed relation of sublattice sites together with atom number
conservation leads to thermal point defects only appearing in combination.
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Substitutional point defects comprising constituent species use the following
nomenclature: a B atom on the α sublattice is called an antisite on the α sublattice,
or an α-antisite in short (for the case of more than two constituent species it would
be necessary to additionally specify the kind of participating atom). The atom
that sits on the wrong sublattice is called anti-structure atom.

The following thermal excitations of the ideal site occupations are possible:5 First,
two unequal atoms can exchange positions, leading to an antisite pair. Second,
the crystal can be enlarged by one unit cell, leading to a vacancy pair, which is
also called a Schottky defect. Finally, it is possible that after creating a vacancy
pair, an A atom fills the β vacancy, resulting in two α vacancies and an A atom on
the wrong sublattice (i.e., a β antisite). This configuration is called a triple defect,
in this case an A-triple defect. Of course, the various kinds of interstitials would
enlarge this zoo of excitations even more, but for simplicity, and as their number
in typical metallic systems is very low, we did not consider them here. Also, for
the case of a larger number of sublattice sites per unit cell the corresponding
number of vacancies would have to be generated at the same time, and the
excitations corresponding to triple defects in the case considered here would be
more complicated.

The four excitations considered above (antisite pairs, vacancy pairs, A- and B-
triple defects) have well-defined formation energies. However, these energies
are not independent: generating an A- and a B-triple defect leads to the same
situation as two vacancy pairs and one antisite pair, therefore the respective
formation energies have to fulfill the corresponding equation. This can also be
seen by counting the sites: let nA

α, nB
α, and nV

α be the numbers of correctly occupied
α sites, α antisites, and α vacancies, respectively, and analogously for β. These six
variables are subject to three boundary conditions nA

α+nA
β
= nA (conservation of

A atoms), the analogous expression for B atoms, and nA
α+nB

α+nV
α = nA

β
+nB

β
+nV

β

(creation of α and β sites only in combination), leading to three degrees of freedom.

As the numbers of the four different point defects (vacancies and antisites on α and
β) cannot be varied independently, their formation energies are not well-defined.
An elegant way to treat the problem of point defects in ordered compounds is to
consider the grand-canonical ensemble, which in general implies that particle
numbers can vary and that the internal energy of a given state is modified by
a term linear in the particle numbers, where the proportionality constants are
called chemical potentials.

For the present case, the experimental situation of a canonical ensemble with
fixed particle numbers and free numbers of sublattice sites (which can vary
by enlarging the crystal and generating vacancies in the interior) is mapped
to a grand-canonical ensemble of fixed number of sublattice sites and varying
particle numbers (for a discussion of these two approaches see A.5.1). As the
ideal configuration is the reference state, the internal energy does not change
by enlarging the crystal by one unit cell. Therefore the chemical potentials for
the two species have to fulfill µA =−µB =:µ. This leads to the so-called effective

5Note that even though these excitations are generated by some sequence of atomic movements at
some position and that therefore the participating point defects are initially spatially conjoint, with
time they will become separated. These separated states are the ones considered here.
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FeAl NiAl
Ev
α Ev

β
EAl
α EFe

β
Ev
α Ev

β
EAl
α ENi

β

Al-poor 1.56 2.96 1.98 0 1.11 1.60 3.10 0
stoichiometric 1.06 3.46 0.99 0.99 0.74 1.97 2.36 0.74

Al-rich 0.56 3.96 0 1.98 0 2.71 0.88 2.22

Table A.3: Effective formation energies in units of eV for B2 FeAl and NiAl. Ideally,
the transition metal occupies the α-sublattice and Al the β-sublattice.

formation energies

Ev
α(µ)= Ev

α(0)−µ (A.3.1a)

EB
α(µ)= EB

α(0)−2µ (A.3.1b)

Ev
β(µ)= Ev

β(0)+µ (A.3.1c)

EA
β (µ)= EA

β (0)+2µ (A.3.1d)

having one degree of freedom µ.

As will be shown in A.5.1, for fixed composition the concentrations of the four
point defect species vary at low temperature according to

cX ∝ e−EX/kBT . (A.3.2)

For a general non-stoichiometric composition, one of the four considered point
defects is the constitutional defect, i.e. the defect that exists at non-vanishing con-
centration down to T = 0 and that accomodates the deviation from stoichiometry.
For the above equation to be fulfilled, its effective formation energy has to vanish.
This condition, together with the obvious condition that no effective formation
energy can be negative, specifies µ unambiguously and allows to determine which
defect is the constitutional defect for a given composition from three independent
formation energies of thermal excitations. On the other hand, in the stoichiometric
case at least two different point defects have to be generated in combination as
thermal excitations, which implies choosing µ so that two effective formation
energies are equal and lower than the other two.

These concepts are exemplified by the cases of B2-NiAl and FeAl according to
calculations of formation energies. Table A.3 shows that an excess of the transition
metal is always accomodated by antisites, which holds also for Al-rich FeAl, while
NiAl displays constitutional vacancies in this case. In the stoichiometric case, the
principal thermal excitations are Ni triple defects for NiAl and antisite-pairs for
FeAl (although Fe triple defects are only barely more expensive), while transition
metal triple defects are the principal thermal excitation in both transition metal-
rich cases, where antisites on the Al sublattice are generated in addition to the
constitutional antisites. The Al-rich cases differ again, here FeAl shows antisite
annihilation (where a vacancy pair is generated, one of which is successively filled
by a constitutional Fe anti-structure atom, giving two Al vacancies), while NiAl
displays vacancy annihilation (the converse case, where an Al atom goes onto a
constitutional Ni vacancy and the ensuing Al vacancy annihilates with another
constitutional Ni vacancy, shrinking the crystal by one unit cell).



A.4. ORDER AND DISORDER 25

A.4 Order and disorder

In general, the state of lowest energy for a system in a given composition is an
ordered state: for short-range interactions, some local motifs are energetically
favoured, and building a structure by fitting such building blocks together leads to
a regular arrangement. In most cases, this will lead to translational symmetry.6

In elemental systems, the only intrinsic defects apart from phonons are vacancies
and interstitials, both of which have quite high formation energies, so that the
system does not display much disorder up to the melting point. In contrast, in
multi-component systems where the constituent elements are not too different
from the chemical point of view, often significant disorder in the crystalline
state can appear at elevated temperatures, affecting the properties of materials
significantly. Specifically, the assignment of specific elements to specific sublattices
in an ordered compound will be disturbed, and at higher temperature it can
transform into a disordered state of higher symmetry (where sublattices lose
their distinction), but where the interactions between the species still lead to
correlations between the occupations of neighbouring sites. These two aspects,
i.e. the degree to which a given sublattice is occupied by a single element, and on
the other hand correlations between neighbouring sites in a disordered system,
go under the terms long-range and short-range order, and will be discussed here.
Note that, as was already related in the previous section, non-ideal occupations of
sites also lead to displacements of the atoms from the ideal lattice.

A.4.1 Long-range order

Consider a binary system that displays B2 order (or any ordered structure with
two inequivalent sites per unit cell). The degree of long-range order is quantified
by the long-range order parameter, which is often denoted η or S. In general it
is defined in terms of the compositions on the respective sublattices such that
it is equal to zero for the disordered case (where the two sublattices have equal
elemental make-up). An appropriate definition for the case at hand would be

η= cA
α− cA

β , (A.4.1)

that is the difference of the concentration of species A on the two sublattices. The
highest possible degree of order for a given composition is when one sublattice is
occupied exclusively by one element, corresponding to

ηmax = 1−|2cA −1|. (A.4.2)

Note that the role of element A is not special, swapping A with B and α with
β would give an equivalent definition. Conversely, the concentrations on the
sublattices follow as

cA
α = cA +η/2 and cA

β = cA −η/2. (A.4.3)

6Exceptions to this rule are charge- or spin-density wave states, which result from non-local
interactions, and quasicrystals, which result from local rotational symmetries that are incompatible
with translational symmetry.
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On the other hand, for the L12 structure with one α site per unit cell and three
equivalent sites βi, a long-range order parameter can be defined formally identical
as in the B2 case

η= cA
α− cA

β , (A.4.4)

but here the sublattice concentrations are now given by

cA
α = cA +3/4η and cA

β = cA −1/4η. (A.4.5)

In the L12 the three β sublattices are equivalent, therefore cX
βi

=: cX
β

. The highest
possible degree of order is given by

ηmax = 2
3

(
1+2cA −|4cA −1|). (A.4.6)

More complicated ordered structures accordingly are described by more compli-
cated long-range order parameters. Take for example the L21 Heusler structure
with nominal composition ABC2 and four sublattices α, β, γ1 and γ2, where the
last two are equivalent. An intuitive choice would be to first define an order
parameter describing the B2-type order, i.e. to which extent the C atoms stay on
the γi sublattices

ηB2 = cC
γ −

(
cC
α+ cC

β

)
/2 (A.4.7)

and an L21-type order parameter describing the division of A and B onto α and β

ηL21 =
(
cA
α+ cB

β − cB
α− cA

β

)
/2, (A.4.8)

and finally whether C goes rather onto α or β

η′ = cC
α− cC

β . (A.4.9)

Note that the purpose of long-range parameters is to give a description of the
elemental make-up on the sublattices that is non-redundant and as symmetrical
as possible. Indeed, one could also use the sublattice concentrations themselves,
however, for instance in the L21-case these are nine variables (three elements
on three inequivalent sites) that are subject to six linear equations (three for
constraining the overall concentrations and three for summing the occupation
of each lattice to one). Note further that in systems where off-stoichiometry
is accommodated by constitutional vacancies, the constraint for the sublattice
occupations to sum to one would not hold any more. In this case, it is more
appropriate to consider vacancies as an additional species.

Finally, attention has to be drawn to the fact that in physical reality, a superstruc-
ture nucleates at different locations in the sample, leading to so-called anti-phase
domains, at the boundaries of which the assignment of sublattices jumps (anal-
ogously to polycrystal grains). Further, in the case of a dislocation, a global
assignment of sites to sublattices is even not possible any more. This demon-
strates that one has to understand the sublattice compositions in a local sense
for above description to be meaningful, as otherwise the presence of anti-phase
domains would average out the differences in the sublattice compositions.
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A.4.2 Short-range order

In general, at temperatures where a given multi-component system has lost
its long-range order, it will still display short-range order. This means that
not all possibilities of occupying the lattice sites with the distinct elements are
equally probable, rather some local configurations are favoured by free energy
and therefore more frequent.

Such local correlations on the pair level are quantified by the Warren-Cowley
short-range order parameters. Consider a binary system with composition c (i.e.
the concentration of element A is c and the concentration of element B is 1− c)
on a Bravais lattice. For a given lattice vector ~x let PA,B

~x be the probability for
site ~y to be occupied by A and site ~y+~x by B, averaged over all ~y (i.e. it is half
the probability for a pair of sites related by a vector~x to be occupied by distinct
elements). The short-range order parameters are then given by

α~x = 1−
PA,B
~x

c(1− c)
. (A.4.10)

Note that in the absence of correlations (that is for very high temperature or large
~x) PA,B

~x = c(1− c), therefore α~x = 0 in this case. Negative values of α~x correspond
to negative correlations, that is preferred unlike pairs, while positive values
correspond to like pairs. In the extreme case where an atom A at ~y implies also
an atom A at ~y+~x (equivalently for B), α~x equals one (which is trivially fulfilled
for~x = 0).

Short-range correlations are present also for long-range ordered systems that
have some degree of disorder. For instance in a B2 system with antisites on
both sublattices, it is conceivable that the β neighbours of an α antisite have
an increased probability to host antisites themselves. It is possible to use the
definition (A.4.10) directly for superstructures. In this case, the parameters α~x
will not decay to zero with large~x, rather they will alternate between positive and
negative values defined by the long-range order parameters. A more sophisticated
generalization of (A.4.10) is to consider three sets of α~x: one with vectors linking
sites on the α sublattice, another for sites on the β sublattice, and a third for
vectors between the sublattices. Using the appropriate sublattice concentrations
in the denominator will lead to a qualitative similar behaviour as in the disordered
case, i.e. a decay towards zero for large~x.

A.5 Statistical mechanics and thermodynamics of
point defects and order

At zero temperature, a sample would in principle assume the state of lowest
internal energy that is compatible with the conditions imposed on it (such as
particle number or volume). At non-zero temperature, it tends to minimize its
free energy, however (which coincides with the internal energy at T = 0). This
implies the consideration of ensembles of microstates, i.e., statistical mechanics,
which will be treated in the following. Specifically, approximate expressions for
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free energies in different models will be derived, which will be used in A.6 to
derive phase diagrams. Note that, indeed, ambient temperature would be low
enough compared to typical excitations energies for being able to approximate
the thermodynamic ground-state by the zero-temperature ground-state for many
materials properties. However, in most cases samples are not in equilibrium at
ambient temperatures with regard to properties such as order, as the slowing
kinetics during cooling freeze the state of the sample at some higher temperature.

The setting for most of this section will be the canonical ensemble. As we consider
a classical system of interacting particles (i.e., we do not consider electrons ex-
plicitly), the degrees of freedom are the positions of the atoms, where atoms of
same species are indistinguishable. More specifically, we will separate configu-
rational and vibrational degrees of freedom. The latter give rise to vibrational
entropies, which we consider as fixed, so that the microstate of the system is
actually described by specifying the occupation of the lattice sites.

In the canonical ensemble, the weight of a given microstate σ is proportional to
the Boltzmann factor which depends on the energy according to

p(σ)∝ exp
(−E(σ)/kBT

)
. (A.5.1)

In a description by macroscopic parameters (e.g., order) denoted by ψ, the proba-
bility for the system to have a given value of ψ follows as

p(ψ)∝W(ψ)exp
(−E(ψ)/kBT

)
, (A.5.2)

where W(ψ) is — sloppily speaking — the number of compatible microstates, and
E(ψ) is the internal energy, averaged over these microstates. The grand-canonical
ensemble is analogous, but with the additional freedom of non-conserved particle
numbers. Here, the internal energies are formally modified by a term linear in the
number of particles, with the chemical potential µ as the proportionality constant
(for multi-component systems each species has a distinct chemical potential).

On the other hand, in the thermodynamic description the equilibrium state of a
system is where its free energy is minimized with respect to ψ. The free energy is
defined as

F(ψ)=U(ψ)−TS(ψ), (A.5.3)

with U the internal energy7 and S the entropy. The connection to statistical
mechanics is made by equating

S(ψ)= kB log
(
W(ψ)

)
. (A.5.4)

Indeed, for fixed temperature minimizing F(ψ) is equivalent to maximizing

exp
(−F(ψ)/kBT

)=W(ψ)exp
(−U(ψ)/kBT

)
, (A.5.5)

which shows that the thermodynamic viewpoint is equivalent to replacing the
distribution of ψ according to equation (A.5.2) by the ψ at its peak, which is
justified in the limit of large particle numbers.

7The internal energy is commonly denoted by U if it is understood in a thermodynamical setting,
and by E if it is the energy corresponding to some specific (micro)state.
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A.5.1 Isolated point defects

We first treat elemental systems, with vacancies as the kind of considered point
defect. The number of ways to arrange N atoms and M vacancies on a lattice is

W(M)= (N +M)!
N!M!

, (A.5.6)

therefore by invoking the Stirling approximation the associated configurational
entropy per lattice site is

Sconf(c)= 1
N +M

kB log
(
W(M)

)
= 1

N +M
kB

(
(N +M) log(N +M)−N log(N)−M log(M)

)
=−kB

(
c log(c)+ (1− c) log(1− c)

)
(A.5.7)

with c = M/(N +M). The free energy per lattice site is

F(c)= cEf −T
(
Sconf(c)+ cSf), (A.5.8)

where Ef and Sf are the formation energy and entropy, respectively. Setting the
derivative with respect to c to zero

0= Ef +T
(
kB log

(
c/(1− c)

)−Sf
)

(A.5.9)

gives

c
1− c

= exp
(−Ef/kBT +Sf/kB

)
. (A.5.10)

On the other hand, considering a fixed number of lattice sites at a varying number
of atoms (i.e., a grand-canonical ensemble) gives directly a probability for a given
site to be occupied by a vacancy and thereby a vacancy concentration of

c = exp
(−Ef/kBT +Sf/kB

)
1+exp

(−Ef/kBT +Sf/kB
) = 1

1+exp
(
Ef/kBT −Sf/kB

) , (A.5.11)

which can be immediately shown to be consistent with above equation.

For small concentrations, the free energy is therefore minimized at a vacancy
concentration of

c = exp
(−Ef/kBT +Sf/kB

)= c0 exp
(−Ef/kBT

)
. (A.5.12)

Treating interstitials, the other kind of intrinsic point defect in elemental systems,
in the canonical ensemble would lead to a slightly different picture, as here
introducing a defect reduces instead of enlarges the number of lattice sites. Still,
for small c, which is in any case implied by considering point defects in isolation,
an equation of the form of (A.5.12) is appropriate.

For ordered compounds, the situation becomes more complicated, as already
discussed in A.3.5. Here the grand-canonical setting with fixed number of lattice
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sites is most convenient. In the simplest case of a binary compound with two
sublattices, with vacancies and antisites on both sublattices as considered point
defects, for instance the concentration of vacancies on the α-sublattice is given by

cv
α = exp

(−(Ev
α−µ)/kBT +Sv

α/kB
)

1+exp
(−(Ev

α−µ)/kBT +Sv
α/kB

)+exp
(−(EB

α−2µ)/kBT +SB
α /kB

) . (A.5.13)

In order to describe an experimental situation of fixed elemental composition, µ
has to be chosen for each T so that the overall composition resulting from the
concentrations of the species on the sublattices is correct. Considering the low-
temperature limit of above formula, it can be seen that the behaviour as reported
already in A.3.5 results: With decreasing temperature also subtle energy differ-
ences become amplified in the Boltzmann factors, so that at some point practically
only one constitutional defect remains that guarantees the off-stoichiometry. The
concentration of this defect has then to be independent of temperature, therefore
its effective formation energy (the numerator in the exponent of the Boltzmann
factor) has to be equal to zero, thereby specifying µ.

Finally, a word of caution is in order: The theoretical prediction of an Arrhenius
behaviour as evidenced by Eq. (A.5.12) has often been taken as a theoretical
necessity for the concentration of defect species, and deviations from it have
been interpreted as being due to multiple defect species at comparable concen-
trations (e.g., vacancy concentrations below the melting point in excess of the
Arrhenius prediction have been construed as indications of divacancies). Apart
from being restricted to the elemental case, this also rests on the assumption
of the defect’s formation entropy being constant. In fact, recent calculations of
defect concentrations have demonstrated that anharmonic vibrational effects can
explain the deviations from Arrhenius behaviour for prototypical systems, ruling
out divacancies at measureable concentrations.

A.5.2 Models for the internal energy

The most general expression for the internal energy of a microstate assuming
short-range interactions and translation symmetry is

E(σ)=∑
~x

Vσ(~x+~s0),...,σ(~x+~sN ), (A.5.14)

where σ(~x) is the occupation function, i.e., σ(~x)= 0 means that site~x is occupied
by element 0 and so on, and Vi0,...,iN are the energies of local clusters, where for
instance V0,... is the energy contribution by a cluster centred around~x that has
the site at position~s0 occupied by 0 and so on.

However, in statistical modelling one commonly considers only pair-wise inter-
actions. The reason is that correlations (if they are treated at all, see below) are
also only treated on the pair level. The corresponding specialization of above
expression is

E(σ)=∑
~x

∑
~s

V~s
σ(~x),σ(~x+~s), (A.5.15)

where~s covers all pairs within the interaction range.
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For the case of a binary system, a further specialization is convenient. The internal
energy per lattice site is

E(σ)= 1
N

∑
~x

∑
~s

V~s
σ(~x),σ(~x+~s)

=∑
~s

(
P A,A
~s V~sA,A +2P A,B

~s V~sA,B +PB,B
~s V~sB,B

)
=∑

~s

(
(c−P A,B

~s )V~sA,A +2P A,B
~s V~sA,B + (1− c−P A,B

~s )V~sB,B
)

=V0 + cV1 +
∑
~s

P A,B
~s V (~s),

(A.5.16)

where N is the number of lattice sites, c the concentration of element A, and

V0 =
∑
~s

V~sB,B (A.5.17a)

V1 =
∑
~s

(
V~sA,A −V~sB,B

)
(A.5.17b)

V (~s)= 2V~sA,B −V~sA,A −V~sB,B. (A.5.17c)

With the Warren-Cowley short-range order parameters this can be expressed as

E =V0 + cV1 + c(1− c)
∑
~s

V (~s) (1−α~s). (A.5.18)

A.5.3 The Bragg-Williams approximation

The Bragg-Williams approximation is the simplest model for the free energy of
general multi-component systems. It is a mean-field method, which means that
it does not consider local correlations at all, it assumes any atom to feel only an
average environment. It can therefore only treat long-range ordering phenomena.

A.5.3.1 Case: Disordered systems on a Bravais lattice

In its simplest form it is a model for the free energy of a disordered binary system,
which is called solid solution. Neglecting correlations, the entropy depends only
on c according to the expression (A.5.7) already derived for isolated point defects,
and the internal energy per lattice site is (Eq. (A.5.18) with α~s = 0)

E =V0 + cV1 + c(1− c)
∑
~s

V (~s), (A.5.19)

giving a free energy per lattice site of

F(T, c)=V0 + cV1 + c(1− c)
∑
~s

V (~s)−TSconf(c). (A.5.20)

The model corresponding to this expression is called the regular solution. If there
is no enthalphy of mixing (no energy terms apart from a constant term and a term
linear in composition), the free energy is determined only by entropy (and Eq.
(A.5.7) is exact), in which case it would be called ideal solution.
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A.5.3.2 Case: Superstructure with two sites per unit cell

Here we consider the simplest kind of superstructure on a Bravais lattice, having
two sublattices with different compositions (for instance, the B2 or L10 structures).
Specifically, let cα and cβ be the concentrations of one element on the respective
sublattices. The entropies of the sublattices are additive, only with the interaction
care has to be taken with respect to the compositions at the participating sites.
The appropriate expression for the free energy per unit cell is

F(T, ci)=2V0 + (cα+ cβ)V1 +
(
cα(1− cα)+ cβ(1− cβ)

)∑
~s

V (~s)

+ (cα+ cβ−2cαcβ)
∑
~t

V (~t)−T
(
Sconf(cα)+Sconf(cβ)

)
,

(A.5.21)

where~s ∈ {〈100〉,〈110〉,〈111〉, . . . } in the B2 case connects sites on the same sublat-
tice, and~t ∈ {1/2〈111〉,1/2〈311〉, . . . } connects sites on different sublattices.

A.5.3.3 Case: L12 superstructure

In the L12-structure, the underlying fcc lattice decomposes into four sublattices,
three of which have the same composition cα and a fourth has a potentially
different composition cβ. The free energy is now given by

F(T, ci)= 4V0 + (3cα+ cβ)V1 +
(
3cα(1− cα)+ cβ(1− cβ)

)∑
~s

V (~s)

+ (
3cα+ cβ−2cα(cα+ cβ)

)∑
~t

V (~t)−T
(
3Sconf(cα)+Sconf(cβ)

)
, (A.5.22)

where again~s ∈ {〈100〉,〈110〉,〈111〉, . . . } are the vectors linking sites on the fourth
sublattice and~t ∈ {1/2〈110〉,1/2〈211〉,1/2〈310〉, . . . } all others.

A.5.4 The cluster variation method

The cluster variation method is a consistent way of expanding local configurations
in terms of correlation variables up to some order and computing the corresponding
configurational free energies.

Consider for instance the fcc lattice. The natural choices for the clusters are

• the one-point cluster consisting of a single site

• the two-point cluster consisting of a nearest-neighbour pair of sites

• the three-point cluster, an equilateral triangle harbouring three two-point
cluster

• the four-point cluster, a regular tetrahedron with four three-point cluster as
faces.
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In those clusters all sites are equivalent with respect to the cluster, but note that
for higher-order clusters this is not the case any more. Note also that for larger
clusters two-point clusters that are not nearest-neighbour pairs appear.

The variables that describe the configuration of a system are x0 = pA and x1 = pB,
giving the probability for one-point clusters to consist of zero or one A-atom,
respectively, y0 = pA,A, y1 = pA,B = pB,A and y2 = pB,B for the two-point clusters,
zi and wi defined analogously for the three- and four-point clusters, respectively.
Note that the degrees of freedom spanned by these variables are quite small:
First, the cluster probabilities on a given order have to sum to 1, for instance∑

i
(4

i
)
wi = 1. Further, the cluster probabilities on a given order completely specify

those of the previous order (and by induction of all smaller orders), for instance
x0 = y0 + y1. This would allow to define one scalar cluster correlation variable per
order up to the tetrahedron level according to ξ1 = x1− x0, ξ2 = y2−2y1+ y0 and so
on.

Given either the correlation variables ξi or the cluster probabilities for some order,
it is easy to compute the internal energy. For instance, in the commonly used
pair-interaction approximation the two-point cluster probabilities yi can directly
be used with Eq. (A.5.16). In contrast, computing the entropy is much harder
in the presence of correlations and exact expressions are known only for very
special cases. This is where the cluster variation method shows a way of obtaining
increasingly accurate approximations.

The linear chain in the pair-level approximation shall demonstrate the concepts as
easiest conceivable example: Consider an ensemble of L systems with some specific
choice for the cluster probabilities. Assume that you construct the configurations
starting from one end, and that at some given stage during this construction all
sites up to site j have been assigned, and the resulting clusters conform to the
chosen probabilities. We will now compute the number of possibilities there are
in assigning an occupation to site j+1 so that the newly resulting clusters also
fulfill the probabilities. In the ensemble there are x0L systems where site j is
occupied by A, and to get the correct probabilities for AA clusters there have to
be y0L systems among those x0L systems where site j+1 is also occupied by A,
and the remaining y1L systems have to have B on j+1. For the x1L systems with
B at j the situation is analogous. Specifically, the number of microstates in the
ensemble increases by a factor of

GL =
(
x0L
y0L

)(
x1L
y2L

)
=

∏
i(xiL)!∏

j
(
(yjL)!

)nyj
, (A.5.23)

where nyj is the multiplicity of a cluster (in the specific example for pairs there
are AB and BA clusters, therefore ny1 = 2). Defining the abbreviations

{ }L = L! (A.5.24a)

{Point}L =∏
i

(xiL)! (A.5.24b)

{Pair}L =∏
j

(
(yjL)!

)nyj (A.5.24c)

and so on, we can write

GL = {Point}L

{Pair}L
. (A.5.25)
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Figure A.1: Inserting an atom in the two-dimensional hexagonal lattice in Halb-
kristalllage.

Specifically, the entropy per lattice site and system is

S/kB = log(GL)
L

=∑
i

xi log xi −
∑

j
nyj yj log yj. (A.5.26)

In a description on the level of point correlations the result would be

GL = { }L

{Point}L
, (A.5.27)

corresponding to an entropy per lattice site of

S/kB = log(GL)
L

=−∑
i

xi log xi. (A.5.28)

Indeed, the point-level cluster description (i.e., only as a function of densities) is
nothing else than the Bragg-Williams approach, reproducing the entropy expres-
sion (A.5.7) derived there. Note also that evaluating Eq. (A.5.26) with pair-level
probabilities yi as uncorrelated products of point-level probabilities

y0 = x2
0 (A.5.29a)

y1 = x0x1 (A.5.29b)

y2 = x2
1 (A.5.29c)

reduces to the point-level description of Eq. (A.5.28).

For the special case of a linear chain with only nearest-neighbour interactions
the cluster variation description is exact already at the pair level. For higher-
dimensional lattices a description by finite clusters is only an approximation,
however. Next we will consider the pair-level description of general Bravais
lattices, with the case of a two-dimensional hexagonal lattice illustrated in Fig.
A.1 as an example.

We consider the number of possibilities to insert an atom in Halbkristalllage at
site A. As in the case of the linear chain, we have

G′
L = {Point}L

{Pair}L
(A.5.30)
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possibilities for doing so with respect to neighbouring site B. Now the occupation
probability of A is correct on the point-level (and also the A-B pair is correct on
the pair level). To have a correct probability also for the A-C pair, a similar factor
is necessary. However, now site A is considered doubly. To correct for this fact,
we divide by the contribution due to site A on the point level, i.e. multiply by the
correction factor

K = {Point}L

{ }L
(A.5.31)

as already used above. Concludingly, for a lattice with a coordination number of Z
(i.e. Z/2 additional bonds per inserted atom in Halbkristalllage) we have

GL = {Point}Z−1
L

{Pair}Z/2
L { }Z/2−1

L

, (A.5.32)

and an entropy per lattice site of

S/kB = log(GL)
L

= (Z−1)
∑

i
xi log xi −Z/2

∑
j

nyj yj log yj (A.5.33)

for lattices of arbitrary dimension.

Finally, as a more complicated example we treat the two-dimensional hexagonal
lattice in the triangle-approximation. Here we have a factor of

G′
L = {Pair}L

{Triangle}L
(A.5.34)

with respect to the A-B-C triangle. The A-C-D triangle gives a similar factor, while
the double counting of the A-C pair necessitates a correction factor of

K = {Pair}L

{Point}L
(A.5.35)

giving

GL = {Pair}3L
{Triangle}2L{Point}L

, (A.5.36)

and an entropy per lattice site of

S/kB = log(GL)
L

=−∑
i

xi log xi +3
∑

j
nyj yj log yj −2

∑
k

nzk zk log zk. (A.5.37)

A.5.5 Short-range order in the high-temperature limit

Here the cluster variation method shall be applied to derive a quantitative ex-
pression for short-range order. Consider a binary system on a Bravais lattice,
initially only with pair interactions between nearest neighbours that would lead
to ordering at low temperatures (that is, V (~s) in the nomenclature of Sect. A.5.2
shall be negative and will in the following be denoted as V2).
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Figure A.2: The nearest-neighbour Warren-Cowley short-range order coefficient as
function of inverse temperature for a solid solution on the bcc lattice at composition
c = 0.35. Temperature is measured in units of −V2, the ordering transition is
around T = 2.65 in these units. Points are due to Monte Carlo-simulation, the line
corresponds to expression (A.5.41).

In the pair approximation of the cluster variation method, the expression for the
free energy reads

F(T, c, pAB)=V0 + cV1 +ZpABV2 −kBT
(
(Z−1)

(
c log c+ (1− c) log(1− c)

)
− Z

2 (pAA log pAA +2pAB log pAB + pBB log pBB)
)
, (A.5.38)

where pAB, pAA and pBB denotes the nearest-neighbour pair probabilities, with
the latter two following from the first.

For fixed composition, the system will minimize its free energy with respect to the
pair probabilities, thus

0 != ∂F
∂pAB = ZV2 +kBTZ/2

(−1− log pAA +2+2log pAB −1− log pBB)
(A.5.39)

which is equivalent to

exp
(−2V2/kBT

)= pAB pAB

pAA pBB . (A.5.40)

At large temperatures correlations will be small. Expanding above expression to
first order in 1/kBT and Warren-Cowley parameter α leads to the result

α= 2V2

kBT
c(1− c). (A.5.41)

Fig. A.2 shows that in a typical situation this expression is quite accurate for
temperatures above about two times the ordering temperature.

In the presence of pair interactions beyond nearest neighbours, both the energy
as well as the entropy in the pair level approximation of the cluster variation
method are essentially additive with respect to the different kinds of pairs. Thus,
taking the derivatives would lead to decoupled equations, so that in the high-
temperature limit it is only the direct interaction between sites that determines
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the corresponding pair probabilities. Indirect interactions, where the occupation
of a given site~x influences some site ~y, which in turn affects a site~z, while there
are no direct energetical interactions between ~x and ~z, scale according to the
derivation given above at least with 1/T2.

A.6 Phases and phase diagrams

A.6.1 Thermodynamic phases and phase transitions

A thermodynamic phase corresponds to a region in macroscopic phase space inside
of which the equilibrium value of any property varies smoothly. These regions
are separated by phase boundaries, which are the locations in phase space where
there is a property that varies non-smoothly. These phase boundaries, which in
the first line are abstract entities in phase space, can often also be observed as
spatial features in physical systems, such as the solid-liquid interface of ice in
water or the liquid-liquid interface in an oil-water mixture.

There is a multitude of ways phases can differ. A very fundamental difference is in
the state of matter, e.g., solid, liquid, or gaseous, and in addition more exotic states
such as a Bose-Einstein condensate. With respect to materials physics, we will
consider primarily solid phases. The principal external degrees of freedom here
are temperature and the composition of a multi-component system, while around
ambient conditions the effect of pressure can often be neglected for solids. The
reaction of the system to changes in these external parameters, that is the internal
parameters that display the non-smooth behaviour, can for instance pertain to
magnetism (from paramagnetic to ferro- or antiferromagnetic, or between ordered
magnetic phases), any kind of structural transition (involving the exchange of
atoms such as in disorder-order transitions or only small-scale displacements in
displacive transitions), or non-continuous changes in compositions.

A main distinction of phase transitions is whether there is a latent heat or not,
corresponding in the classification due to Paul Ehrenfest to first-order transitions
(where the first derivative of the free energy shows a discontinuity) and higher-
order transitions (discontinuity in a higher derivative), respectively. Examples
for first-order transitions are discontinuous transitions such as melting, while
magnetic transitions are typically of second order. Interestingly, we will see that
already among the simplest order-disorder transitions there are examples for
either kind.

A further important aspect of phase transitions is whether there is a symmetry
breaking involved. For instance, in the melting transition the discrete trans-
lational symmetry of the crystalline solid is broken, while in the liquid-vapour
transition there is no further symmetry to be broken. Also in paramagnetic/
(anti-)ferromagnetic transitions and disorder-order transitions a symmetry is
reduced, as the fundamental lattice in the parent phase decays into inequivalent
sublattices.

A metastable phase is a phase that is actually not the ground-state phase, but
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which can exist when the kinetics that would bring the system to equilibrium
become longer than experimental timescales at low temperature. Relevant exam-
ples of metastable phases are the diamond modification of carbon (where graphite
would be the ground state at ambient pressure) and Fe3C (cementite) in the iron-
carbon system, where only the pure elements (i.e., iron and graphite) are actually
ground-state phases. Glasses show a complicated situation: while the amorphous
solid is always only metastable, it is not clear whether it is only an extension
of the liquid phase to lower temperatures or whether there is some well-defined
liquid-glass transition affecting primarily the dynamics of the system.

A final subtlety has to be noted: For instance, in the temperature-pressure phase
diagram of an elemental system the liquid-vapour phase boundary ends at a
critical point, above which there is no point to distinguish the liquid and vapour
phase. According to above definition, they are therefore the same phase, as they
share a single common region in phase space (in fact, they do have the same
symmetry, as mentioned already). However, at low temperature and low pressure
the two phases are clearly distinct, and commonly they are considered as different
phases. Also in binary solid-state systems that are miscible at high temperatures
but have a low-temperature miscibility gap, the A- and B-rich phases have to
be considered as distinct at low temperatures, while they are connected at high
temperatures.

A.6.2 Convexity, bitangents and the lever rule

A system that is held at some fixed temperature will minimize its free energy.
Here we will only consider the resulting thermodynamic ground state given the
external parameters, which effectively are the composition of the system and
temperature. We will not consider the way this ground state is reached from a
given initial state, which is the question of kinetics.

In principle, the degrees of freedom can be classified into three categories: first,
there are qualitative distinctions corresponding to different phases, such as liquid,
bcc, fcc or so on. Further, there are continuous degrees of freedom such as
parameters describing the unit cell dimensions, positions of sublattices, and their
elemental make-up. As we normally consider a case of fixed (and low) pressure,
all these internal parameters are not fixed by external parameters and will be
minimized.

The composition makes up the third category. It is a continuous degree of freedom,
but in contrast to those of the second category it is constrained by particle number
conservation. However, this does not forbid spatial composition inhomogeneities,
where the local compositions deviate from the mean value.

Consequently, the thermodynamic ground state of a multi-component system
results in the following way: Consider a system of J components and specific
values for the external parameters (such as temperature). Consider a number
of qualitatively different phases the system can display, and assume that their
specific free energies are given by Fi(c j,βi

l), where i enumerates the phases, βi
l are

the respective internal parameters, and c j are the concentrations of the respective
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elements. Define

F ′
i(c j)=min

βi
l

Fi(c j,βi
l) (A.6.1)

and

F ′(c j)=min
i

F ′
i(c j), (A.6.2)

that is to say F ′
i(c j) is the resulting free energy of phase i at composition c j with

optimal choice of the internal parameters, and F ′(c j) is the absolute minimum
free energy the system can have at this composition (with optimal choice of the
qualitative phase).

What remains now is the freedom of concentration inhomogeneities: For this end,
assume that the system decays into K regions with concentrations ck

j and weight
xk. Of course we have∑

k
xk = 1 (A.6.3)

and ∑
k

xk ck
j = c′j, (A.6.4)

where c′j is the overall composition.

Free energy is additive, meaning that if a system is composed of a number of
subsystems, the total free energy of the system is the sum of the subsystems’ free
energies. Consequently, the free energy of an inhomogeneous system is given by

F =∑
k

xkF ′(ck
j ), (A.6.5)

which can potentially be lower than F ′(
∑

k xk ck
j ).

Note that this issue corresponds to a question of convexity: If F ′ is not convex, there
are compositions where the system can gain free energy by a phase separation, i.e.,
separating into regions with respective weights xk and compositions ck

j , so that the
weighted average free energy is lower than the free energy of the homogeneous
system would be. Allowing for phase separation, the free energy is yet again
reduced to the lower convex envelope of F ′: Discussing from here on only the
binary case for simplicity, this corresponds to finding all lower bitangents and
replacing the F ′ in the region between the tangent points by the bitangent.

Physically, a system with a total composition c that falls within the range of
such a bitangent is in a two-phase state: let c1 and c2 be the compositions in
the tangent points, then the system decomposes into a phase with composition
c1 and weight x1 = (c2 − c)/(c2 − c1) and a phase with composition c2 and weight
x2 = (c− c1)/(c2 − c1). This relation is termed the lever rule in analogy to the case
of mechanics, with xi as the forces, ci as their points of attack, and c as the pivot.
Specifically, note that the compositions of the two phases do not depend on the
total composition.
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Figure A.3: Miscibility gap: free energy for representative temperature T ′ where
demixing occurs (left), resulting phase diagram (right).

A.6.3 Free energies and phase diagrams

Phase diagrams can display a large variety of features. As already mentioned,
in materials physics the principal external parameters are temperature and
composition. Therefore, for binary systems the phase space is two-dimensional,
and therefore can be completely defined by a drawing.

A main point to remember is that a phase diagram is a reduction of the information
contained in the free energy curves. Therefore, theoretically possible phase
diagrams are exactly those for which continuously varying (in T and c) free energy
curves can be found. Here the possible behaviours of free energy curves and
the resulting features in the binary phase diagrams will be covered at hand of
prototypical examples.

The first scenario is the miscibility gap (Fig. A.3). It appears in systems where
interactions between unlike atoms are energetically costly. Therefore, the internal
energy has a maximum at intermediate concentrations. The entropy on the other
hand, qualitatively described by an expression such as (A.5.7), is convex, and
will win at high temperatures over the internal energy to give a convex free
energy. However, at some specific critical temperature the free energy will become
non-convex. The corresponding single bitangent will therefore give a two-phase
region that widens as temperature is further reduced. However, at any finite
temperature there will be a finite solubility in each of the terminal phases, as the
diverging derivative of the entropy at c = 0 and c = 1 always wins over the finite
derivative of the internal energy.

The next cases correspond to the solid-liquid transition. If neither in the solid
nor in the liquid phase there are large interactions but the melting temperatures
of the pure elements deviate enough from each other, a situation as in Fig. A.4
results. The liquid has higher entropy as well as higher internal energy than the
solid. Therefore, at low temperatures the solid has lower free energy. With rising
temperature the difference becomes smaller, until at the melting temperature
of the lower-melting element the two curves touch. At higher temperatures the
bitangent points move towards the higher-melting concentration, and after the



A.6. PHASES AND PHASE DIAGRAMS 41

c

F
(c
)

c

T’

Figure A.4: Liquid-solid transition in ideally mixing case.
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Figure A.5: Liquid-solid transition with demixing tendency in solid phase.

temperature has passed the melting temperature of the higher-melting element,
the liquid has lower free energy over the whole concentration range. In this
scenario, the liquidus line (over which the system is exclusively liquid) and the
solidus line (below which it is solid) form a lense-shaped two-phase region of
liquid and solid. Note that this shows that when cooling a system of some fixed
composition the equilibrium concentration of solid and liquid phase vary with
decreasing temperature. If the cooling happens fast so that the diffusion kinetics
in the solid cannot follow, the resulting solid will show gradual concentration
variations. This phenomenon is known as Seigerung.

If now there is a demixing tendency in the solid, the thermodynamical stability of
the liquid will be higher at intermediate compositions. In this case, a situation
as depicted in Fig. A.5 will result, where the liquidus line shows a minimum,
corresponding to the point where the free energy curve of the liquid passes first
through the solid’s curve. At this point congruent solidification or melting is
possible (i.e., at the same concentration and without long-range mass transport).

A system hosting a high-melting intermetallic phase leads to a situation as
illustrated in Fig. A.6. Here the free energy curve of the intermetallic phase
passes through the liquid free energy curve, again leading to a specific point of
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Figure A.6: High-melting intermetallic line phase.

c

F
(c
)

c

T’

Figure A.7: Eutectic transition.
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Figure A.8: Peritectic transition.
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above below type
homotectic L L’ + L”

eutectic
monotectic L L’ + S

eutectic L S1 + S2
catatectic S1 S2 + L

monotectoid S1 S′
1 + S2 eutectoid

eutectoid S1 S2 + S3
syntectic L + L’ S

peritectic
peritectic L + S1 S2

peritectoid S1 + S2 S3 peritectoid

Table A.4: Classification of invariant reactions in binary systems. Note that the
homotectic and syntectic cases, corresponding to liquid phase separation, are
normally not encountered in atomic as opposed to molecular systems.

congruent melting, where both bitangents disappear at the same time.

The final scenarios to treat correspond to the splitting of one bitangents into
two, or equivalently the case where a single phase splits discontinuously into
two phases when varying the temperature. If the single phase exists above the
transition temperature, such transitions are said to be of eutectic or eutectoid type,
for reactions involving at least one liquid phase or only solid phases, respectively.
The cases of a single phase existing below the transition corresponds to reactions
of peritectic/peritectoid type. These cases are illustrated in Figs. A.7 and A.8. The
nomenclature for the possible cases (essentially pertaining to which participating
phases are liquid and which are solid) is given in Tab. A.4. Specifically the eutectic
transition gives a characteristic microstructure, with a fine succession of the solid
product phases due to the limited diffusivity in the solid.

As an example, the Ni-Al binary system shall be discussed. Its phase diagram
is given in Fig. A.9. It is dominated by the B2-NiAl intermetallic phase, which
is congruently melting at practically stoichiometric composition due to its large
thermodynamic stability. Its phase field is quite asymmetric due to the quali-
tatively different constitutional defects on the respective sides of stoichiometry
as discussed in Sect. A.3.5. Indeed, the phase Al3Ni2 with D513 structure as
discussed in Sect. A.2.3.1 can be understood as an ordering of the consitutional
vacancies on the Ni-lean side of NiAl. It ends in a peritectic transition, which
is shifted away from the ideal stoichiometry due to the stability of NiAl. The
Al3Ni phase is yet less stable and thus also ends in a peritectic transition. It is
a line compound, that is, it has a very small capacity to incorporate an excess
of either element, which is due to its complicated structure of type D011 (shared
by cementite Fe3C). Also in pure fcc Al, the solubility of Ni is extremely low (at
most 0.11 at.%), thus the addition of Ni lowers the free energy of the liquid phase
compared to the solid candidates, giving a eutectic point at about 3 at.% Ni.

On the other side, the solubility of Al in Ni is quite large, which leads to the
solidus and liquidus lines extrapolating nicely to the melting temperature of
Al. Further, the L12 Ni3Al phase is just the superstructure due to an ordering
of the dissolved Al atoms. Here there is a peculiar situation, as the eutectic
temperature (as the low-temperature endpoint of the liquid phase in this region)
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Figure A.9: Binary phase diagram of Ni-Al.

and the high-temperature endpoint of the Ni3Al phase nearly coincide, making the
experimental determination of the correct topology quite complicated. Nowadays
it is assumed that the eutectic point is to the left of the Ni3Al phase, which thus
dissolves peritectically into the liquid phase and fcc Ni (as opposed to NiAl). The
complicated Ni5Al3 is much less stable and ends in a peritectoid transition to NiAl
and Ni3Al.

For systems composed of more than two components, two-dimensional illustrations
cannot capture the whole phase space. In the ternary case, conventionally one
encodes the composition as the position within an equilateral triangle, where the
corners correspond to the pure elements. Concentration-dependent quantities
such as the liquidus temperature can then be specified, e.g., by drawing contour
lines. Another possibility is to draw cuts through phase space at some specified
temperature as illustrated in Fig. A.10 for the Ni-Mn-Al system. For compositions
with not too high Al content, the system displays the terminal Ni (fcc) and Mn
(A13) phases. Note that the A13 phase of Mn can accomodate about 35 at.% Al,
while alloying Ni transforms it to an fcc phase (γ-Mn). Also the converse case of
alloying Mn to Ni leads to an fcc structure over a wide range of compositions, while
with Al the intermediate L12-phase is formed around the nominal composition
of Ni3Al as already obvious from the binary Ni-Al phase diagram. Finally, there
is the B2 phase, which is characterized by Ni and Al splitting into different
sublattices (corresponding to the prototypical B2 NiAl system in the binary limit)
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Figure A.10: Ternary phase diagram of Ni-Mn-Al at 850 ◦C (redrawn from
R. Kainuma et al., J. Alloys Comp. 269, 173 (1998)).

with Mn filling in on the sublattice of the deficient element. In the two-phase
regions tie lines connect the bitangent points, i.e. for a given point in a two-phase
region the system will decompose into two phases with respective compositions
corresponding to the endpoints of the tie line the overall composition lies on, and
weights as given by the lever rule. Note also the three-phase regions of strict
triangular form at compositions of about Ni65Mn25Al10 (where Ni-rich fcc, L12
and B2 are in equilibrium) and Ni20Mn65Al15 (where β-Mn, Mn-rich fcc and B2
are in equilibrium). For any total composition within those regions, the system
decomposes into three phases with compositions corresponding to the triangle
corners and weights given by a generalized lever rule.

Gibbs’ phase rule rationalizes the number of phases that can be in equilibrium:
For constant pressure, it reads

f = n−P +1, (A.6.6)

where n is the number of components in the system, P is the number of phases
in equilibrium, and f is the number of degrees of freedom (which encompass
composition and temperature). For instance, if in a three-component system
(n = 3) there are three phases in equilibrium (P = 3), there is only one degree of
freedom left, which is the temperature, as all concentrations are fixed. As another
example, in a two-component system the region of a homogeneous phase has two
degrees of freedom (temperature and composition), while in a two-phase region
the compositions directly follow from the temperature.

Finally, as an example for a pressure-temperature phase diagram the case of iron
is illustrated in Fig. A.11. Already at zero pressure iron is a peculiar case: At low
temperatures it has a ferromagnetic bcc structure, the only ferromagnetic phase.
Within this α phase there is a Curie transition to a paramagnetic bcc structure,
soon followed by a transition to fcc. However, before the system eventually melts,
it transforms back to bcc. As can be expected, higher pressures favour close-packed
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Figure A.11: The pressure-temperature phase diagram of iron.

phases, where additional to the widening fcc phase an hcp phase appears at low
temperatures. Indeed, the hcp phase is the most stable phase under pressure, as
the fcc phase ends at a critical point at about 80 GPa and 2800 K, after which hcp
is the sole stable solid phase.

Qualitatively, the widening of the γ-phase region with temperature implies that
the fcc phase is favoured by compression over the bcc phases. Specifically, consider
the α and γ-phases. As γ is the high-temperature phase, it has a higher specific in-
ternal energy. The negative slope of the phase boundary implies that compressing
the system favours the γ phase, therefore this phase has to have a higher density.
Quantitatively, this is captured by the Clausius-Clapeyron relation

dP(T)
dT

= L
T∆v

, (A.6.7)

where P(T) is the phase boundary, L the specific latent heat and ∆v the specific
volume change during the transition. Note that this relation is meaningful only
for first-order transitions, having non-zero latent heat and volume change.

As a consequence of the above, one can directly infer the sign of the volume change
at a phase transition from pT-phase diagrams: A negative slope of the phase
boundary implies an increase of the density when going from the low-temperature
to the high-temperature phase and vice versa. For the case of iron this corresponds
to ρL < ρδ < ργ < ρε, ρα < ργ as well as ρα < ρε.
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