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Preamble

The ways in which physics as a scientific discipline has occupied itself with
neutrons can be classified in three fields:

• the physics of the neutron itself — the properties of the particle

• the physics of the interaction of neutrons with matter and

• doing physics by employing neutrons as a tool.

The order of these points indicates roughly their temporal sequence. Indeed,
at the present stage the first two problems are solved to a sufficient level to
allow to tackle questions of (typically) condensed matter physics by doing neutron
experiments, which constitute a large and active field. This sets the point of view
of the present lecture: To show what can be learned by letting neutrons in more or
less well-defined states interact with samples and observing the changes either in
the outgoing neutrons or in the sample, and to explain how to do that. Of course,
in order to accomplish this task, the physics of the neutron and of its interaction
with matter are a prerequisite.

The presentation in this lecture will deviate from the sequential development that
is often followed in textbooks of neutron scattering, which consists in starting
with the quantum-mechanical treatment of the scattering process and applying it
to specific processes in the samples. Instead, here we will start with the properties
of the neutron, phenomenologically discuss its interaction with matter, and then
present the range of neutron techniques. Only after that the rigorous formalism for
the scattering process will be given and the quantitative description of the various
effects will be discussed. The intention is that, given that this is a course over two
terms, already after the first term the students should be able to understand the
basics of the relevant neutron techniques and to decide whether a given question
can be answered by performing a specific neutron experiment, which is the main
competence from the users’ perspective.
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Chapter A

The neutron

A.1 On the neutron itself

In nature at ambient conditions, the neutron is exclusively located in atomic
nuclei. How it was discovered and the properties it was found to have will be
detailed here.

A.1.1 History

The approximately linear relation between the charges and masses of most nuclei
suggested the nuclei of different elements to be made up of different amounts of
the same building blocks. However, compared to the hydrogen nucleus, which
was known to possess the unit of electic charge, heavier nuclei have mass/charge
ratios that are higher by about a factor of two. This led Ernest Rutherford in 1920
to propose a neutral nuclear particle to be responsible for this added mass in the
heavier nuclei. He imagined this to be not a new fundamental particle but rather
a bound proton-electron pair, thereby explaining the electron being emitted from
the nucleus during beta decay.

In 1930, Walther Bothe and Herbert Becker found that when beryllium was
subjected to alpha radiation (emitted from polonium), a very penetrating radiation
resulted. As it was not deflected by an electric field, they assumed it to be gamma
radiation. In 1932, Irène Joliot-Curie and Frédéric Joliot found this radiation
to be able to eject high-energy protons from paraffin, which they explained by a
proton-Compton effect.

Upon learning of this phenomenon, James Chadwick quickly recognized that the
Klein-Nishina formula, which, being derived from quantum electrodynamics, was
able to quantitatively describe the electron-Compton effect, predicted much less
scattered protons than observed, and those at much lower energy. Having himself
previously tried unsuccessfully to detect Rutherford’s neutron, he realized that
it was a candidate for the observed penetrating radiation. Within just 10 days

1



2 CHAPTER A. THE NEUTRON

of experimentation, he reproduced the Joliot-Curie observation and was able to
observe also kick-out events from light elements other than hydrogen. Measuring
the transferred energy and assuming elastic collisions, he could explain his results
by a mass of the neutral particle of about mn = 1.15u, with an estimated error of
10%. In today’s notation, he proposed the nuclear reaction

9
4Be+ 4

2He→ 12
6C+ 1

0n, (A.1.1)

with 1
0n the neutron.

Later, he repeated the experiment with the reaction

11
5B+ 4

2He→ 14
7N+ 1

0n, (A.1.2)

which had the advantage that for all nuclei high-precision mass-spectrography
masses were known, giving a value of

mn = 1.0067±0.0012u. (A.1.3)

This conclusion that the neutron mass is in first order equal to the proton mass,
but actually slightly larger, is valid to this day. For his demonstration of the
existence of the neutron Chadwick received the 1935 Nobel Prize.

The question of whether the neutron was a new fundamental particle or a closely
bound proton-electron pair was not yet settled. Obviously, the latter option
required a restriction of the validity of quantum mechanics, as normally a bound
proton-electron pair would give an ordinary hydrogen atom. Along with other
paradoxes of the proton-electron model, this had to be weighted against the added
complexity of theories assuming a new elementary particle, which sprang up after
the demonstration of the neutron’s existence.

Chadwick proposed to settle the question by determining the neutron mass to even
higher accuracy: if it was definitely heavier than the combined mass of proton
and electron, it had to be an elementary particle, as a hypothetical binding energy
would lead to a relativistic mass deficiency. In 1935, by photodisintegrating
deuterium with 2.6MeV quanta and determining the kinetic energies of the
reaction products in

2
1D+γ→ 1

1H+ 1
0n (A.1.4)

he obtained a value of mn either 1.0084 or 1.0090u, depending on the used values
for proton and deuteron, compared to mp +me = 1.0078u. This demonstrated that
the neutron was not a closely-bound proton-electron pair, and at the time it was
considered as an elementary particle. At the same time this measurement showed
that as a free particle the neutron is unstable against beta decay, as predicted by
Enrico Fermi in 1934.

A.1.2 Properties of the neutron

The neutron is a baryon, which means that it is made up of three quarks. Today it
is known that it is not an elementary particle, but composed of one up and two
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down quarks, giving it a charge of exactly zero according to the current theoretical
description. Experimentally, the electrical charge’s absolute value is bounded by
10−21e. The neutron radius is on the order of femtometers. The neutron acts as a
fermion with spin 1

2 .

As mentioned above, a free neutron is unstable against beta decay. It will decay
with a mean lifetime of 881.5±1.5s into a proton, an electron, and an electron
anti-neutrino (in rare cases also a gamma quantum can be emitted). This decay
mode is also active in neutron-heavy radioactive isotopes, with lifetimes that
depend on the energetics of parent and daughter nuclei and that can be both much
longer or shorter than the free-neutron value, while the neutron is stable in stable
or neutron-lean isotopes. On the other hand, neutrons can result from inverse
beta decay, where one proton in a proton-heavy nucleus decays into a neutron, a
positron, and an electron neutrino, or from electron capture, where instead of a
positron being emitted an electron is captured.

Because of its internal structure of charged quarks, the neutron has a magnetic
moment. This moment has a negative value, which means that the dipole moment
is oriented anti-parallel to the neutron spin. Due to the (small) violation of CP
symmetry in the weak interaction, the neutron is expected to have a small electric
dipole moment. Experimentally, no such finite dipole moment has yet been found,
and the Standard Model would predict a value about 5 orders of magnitude smaller
than the present experimental limits. However, the zoo of theories beyond the
Standard Model has differing predictions on the neutron electric dipole moment,
so a further reduction of its bounds would rule out some of those, while the
demonstration of a finite value would be a strong argument in favour of specific
kinds of theories. Together with the question of the free neutron lifetime, which is
a critical parameter in post-Big Bang nucleosynthesis, this is therefore an active
venue of experimental research at different institutes.

A.1.3 The neutron in nuclear physics

The neutron is vital for the existence of atomic nuclei heavier than hydrogen.
Specifically, nucleons interact via the nuclear force, which can be seen as a
short-range leaking-out of the strong force acting between the quarks within
the nucleons. Due to the internal structure of nucleons, there is no fundamen-
tal, exact description of this interaction. Phenomenologically, however, it can be
described as a predominantly pair interaction, which is attractive at distances
around 1fm. In this regime, it is much stronger than the Coulomb repulsion, but
it decays faster with distance than a power law. The interaction does not depend
on the kind of the nucleon, be it between two neutrons, two protons, or a proton
and a neutron. However, it depends on the relative spins of the nucleons, where
the attraction is stronger if the spins are parallel. This leads to the fact that
the quantum-mechanical system of two neutrons does not have a bound state,
as due to the Pauli principle their spins are anti-parallel for the ground-state
symmetrical spatial wave-function. For a di-proton, the same applies, with the
added repulsion due to the Coulomb interaction. However, a deuteron can have a
spin 1 configuration, leading to a bound state.
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For heavier nuclei, the role of the neutrons is analogous, in that their being
different particles than the protons allows for more parallel spin configurations
over close distances and therefore higher attractions due to the nuclear force. The
Coulomb repulsion among the protons is only of secondary importance, which
explains that the properties of light mirror nuclei (i.e. those that are related by
exchanging all neutrons for protons and vice versa) correspond to each other to a
large degree. Specifically, this implies that for light nuclei the stable configurations
have approximately equal numbers of protons and neutrons. However, for larger
nuclei it becomes on average more favourable to add a neutron than a proton
to a stable nucleus, as the former doesn’t add to the electrostatic energy, which
increases faster than linearly with Z, leading to higher neutron per proton-ratios,
with the heaviest primordial nuclide 238

92U having 146 neutrons to its 92 protons.
This excess electrostatic energy makes heavy nuclei unstable with respect to
splitting up. In such instances, the daughter nuclei would have a surplus of
neutrons. Some of those are released immediately with energies in the MeV range
(called prompt neutrons), while the rest is converted by beta decay to protons
(the liberated energy of which can also lead to additional neutrons being emitted,
called delayed neutrons).

Apart from large-scale facilities, which will be discussed later, there are a number
of techniques that can provide neutron beams of low fluxes with comparably low
effort. Historically, the first of those is to use the (α,n)-reaction as discovered
by Bothe and Becker and discussed above. Nowadays, this is optimally done by
sealing powder mixtures of compounds containing an α emitter such as Po and
specific light elements such as Be (having a large (α,n) cross section) in a low-Z
matrix. Further, a (γ,n)-reaction can be employed in analogous devices. Finally,
there is spontaneous fission (with associated neutron emission) of transuranic
elements, with 252Cf the most commonly used isotope.

A.1.4 Quantitative properties of the neutron

The mass of the neutron is

mn = 1.674927471(21)×10−27 kg= 1.00866491588(49)u (A.1.5)

= 939.5654133(58)MeV/c2. (A.1.6)

In terms of the proton mass, it is

mn = 1.00137841898(51)mp, (A.1.7)

that is, it is heavier by about 0.13 %.

The other fundamental quantity relevant for neutron scattering is the magnetic
dipole moment, it is given by

µn =−0.96623650(23)×10−26 J/T=−1.91304273(45)µN, (A.1.8)

where the nuclear magneton

µN = eħ
2mp

. (A.1.9)
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In analogy to the Bohr magneton, which corresponds to the classical value of
magnetic moment that is induced by the current of an electron on a circular path
corresponding to an angular moment of ħ, it sets the order of magnitude of a
nucleon’s magnetic moment in a classical view of the quark dynamics.

As discussed above, the neutron is expected to have a small electric dipole mo-
ment, but experimentally no significant finite value has been determined yet.
Experiments constrain it to below 2.9×10−13 e·fm, which, given the fact that its
radius is on the order of fm and the charge of its constituting quarks on the order
of e, shows that the centers of mass of its charge positive and negative charge
distributions have to be extremely close.

A.1.5 Rules of thumb

For quick calculations in scattering and condensed matter physics, a few rules of
thumb are collected here. Here only a few digits of accuracy will be reported.

Boltzmann’s constant is

kB = 8.617×10−5 eV/K, (A.1.10)

therefore room temperature of TR = 300K corresponds to

kBTR ≈ 25meV. (A.1.11)

For photons in vacuum, we have E = hν and c =λν, therefore

λ≈ 1240eVnm
E

. (A.1.12)

For neutrons, we have p = mnv, p = h/λ and E = mnv2

2 , therefore

λ= h
mnv

≈ 4000Åm/s
v

≈ 9Åp
E/meV

. (A.1.13)

Neutrons with 25meV, corresponding to room temperature, have therefore veloci-
ties v ≈ 2200m/s and wavelengths λ≈ 1.8Å.

The Bohr magneton

µB ≈ 0.058meV/T, (A.1.14)

therefore fields on the order of 15T (corresponding to the high end of what can be
applied as external field in the laboratory) give a Zeeman splitting on the order of
1meV due to the spin of free electrons, so that at about 10K paramagnetic spins
become appreciably polarized in such fields. Conversely, the nuclear magneton of

µN ≈ 3.2×10−5 meV/T (A.1.15)

shows that nuclear spins will only become polarized in the millikelvin regime.



6 CHAPTER A. THE NEUTRON

A.2 The neutron’s interaction with matter

This section deals with the basic aspects of the interaction between free neutrons
and matter. It introduces the concepts that allow to discuss the different experi-
mental techniques phenomenologically, while the quantum-mechanical description
of the scattering process will be given later.

A.2.1 Kinds of interaction

A free neutron interacts with matter principally in two ways:1 First, it interacts
with the sample’s nuclei via the nuclear force as discussed above. For a given
nucleus, the potential felt by the neutron corresponds to the difference in energy
of the original, unmodified nucleus compared to the compound nucleus. For
neutrons of not too high energy, the neutron wavelength is much larger than
nuclear dimensions. Therefore, for practical purposes the nuclear potential can be
assumed to be confined to a point, which is called the Fermi pseudo-potential

VF(r)= 2πħ2

mn
bδ(r). (A.2.1)

Here δ(r) is Dirac’s delta distribution, and b is the scattering length, the signifi-
cance of which will be treated in more detail below. As was discussed above, the
interaction due to the nuclear forces depends on the relative spins of nucleus and
neutron, therefore for all nuclei with non-zero spin there are scattering lengths
b+ and b−, corresponding to parallel and antiparallel spin configurations, respec-
tively. Note that the purpose of the Fermi pseudo-potential is only to correctly
describe the scattering due to a nucleus placed in a neutron beam. It does not
aim to correctly describe the situation at the position of the nucleus, specifically
a positive scattering length corresponding to a repulsive Fermi pseudo-potential
does not imply that the neutron does not have a bound state with the nucleus,
with b+ of 1

1H being such a counterexample.

Apart from the interaction with the nuclei via the nuclear force, a neutron also
interacts with a sample’s magnetic fields due to its magnetic dipole moment.
Specifically, in a local field ~B(r) the neutron experiences a potential

Vmag(r)=−~µn~B(r), (A.2.2)

which again depends on the neutron spin.2 However, in contrast to the random
orientations of the nuclear spins, in a magnetic sample the electronic system
causes systematic local variations of the field, which can be observed in the
scattering.

Different from most other probe particles, the neutron is neutral, therefore there
is no electric interaction with the sample. Due to the comparably large mass and

1Strictly speaking, there is also gravitational interaction, but due to its vanishing importance
compared to the other interactions it is irrelevant for describing scattering processes. Its only effect
will be to modify the trajectories of low-energy neutrons.

2Quantum-mechanically, the neutron magnetic dipole moment is an operator, the consequences of
which will be treated later.
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correspondingly small magnetic dipole moment, also the magnetic interaction
is comparably weak (by three orders of magnitude compared to the effect on
electrons), and while the nuclear force can be strong, most of space is devoid
of nuclei. As a consequence, the penetration length of neutrons into matter is
comparably large. Further, in contrast to the case of X-rays, the probability for
a neutron to be absorbed normally is even smaller than to be scattered. This
leads to the fact that in neutron scattering experiments care has to be taken to
suppress multiple scattering. Often one chooses the sample dimensions so that
only 10 % of the incident beam is scattered, which implies that only about 1 % of
the incident beam is scattered two times, giving a multiple-scattering contribution
to the signal on the order of 10 %. This is again in contrast to X-ray scattering,
where typically absorption limits the optical path length through the sample to
values where multiple scattering can be neglected.

A.2.2 Concepts of neutron scattering

The flux Φ of a particle beam is defined as the number of particles that go through
an area normal to the beam direction per time and area. The absorption cross
section σabs of a system put into a homogeneous flux is the number of particles
that are absorbed from the beam per time and normalized to the incident flux Φ.
It has the dimensions of an area, and classically it is nothing else than the area
enclosed by the outline of an absorbing medium as seen along the beam.

Conversely, if the medium scatters the particles out of the beam instead of absorb-
ing them, the corresponding quantity is the total scattering cross section σtot. The
differential scattering cross section dσ

dΩ is the flux-normalized number of particles
scattered per time into the solid angle dΩ. For scattering systems with internal
structure, it varies with the direction of dΩ, and obviously its integral over all
directions gives the total cross section∫

dΩ
dσ
dΩ

=σtot. (A.2.3)

Further, for non-static samples the particle can also experience an energy transfer,
leading to so-called quasi-elastic or inelastic scattering (to be defined later). Such
scattering processes are described by the double differential cross section d2σ

dΩdEf
,

where Ef is the final energy of the out-going particle. Again,∫
dEf

d2σ

dΩdEf
= dσ

dΩ
. (A.2.4)

As will be treated in more detail later, on a basic level and for static samples the
physics of the scattering of particles such as neutrons and of photons are very
much alike: A nucleus with scattering length b at the origin within a incident flux
of neutrons described by a wave function

ψi(r)= eikir (A.2.5)

leads to a spherical outgoing wave function

ψf(r)=−b
ei|ki||r|

|r| = −b
eikir

r
. (A.2.6)
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The minus sign is just convention, it leads to repulsive potentials having positive
scattering lengths. Scattering length and total cross section of a single nucleus
are related by

σtot = 4πb2. (A.2.7)

The absolute value of the scattering length is large if the neutron-nucleus system
is near to a resonance, that is, if the neutron energy is close to the energy of
an excited state of the compound nucleus. In this case, it has also a signicant
imaginary part, corresponding to absorption. As the typical energy differences of
nuclear states are much larger than the energy range of thermal neutrons, only
in rare coincidences such a resonance falls into the thermal range. Examples are
113Cd and 157Gd. However, in the typical case the scattering length in the thermal
range can be considered to be independent of energy.

For tabulations of scattering lengths and cross sections, normally the nucleus
is considered to be fixed during the scattering event. The corresponding values
are the so-called bound scattering lengths and cross sections. If the nucleus was
allowed to recoil, the appropriate way to solve the scattering problem would be to
pass into the center-of-mass frame. With the appearance of the reduced mass

µ= A
A+1

(A.2.8)

in units of u, where A is the atomic mass number, the scattering lengths are
reduced by the same factor A/(A+1), and the cross sections by its square, which
specifically for the lightest elements such as hydrogen has an appreciable effect.
For atoms in a solid, such a recoil event would have to excite a phonon, which
quantum-mechanically is unlikely at not too high temperatures.

For a system composed of a number of scatterers, the interference between the
distinct scatterers leads to characteristic variations in the scattered intensity over
the outgoing directions. Specifically, the sample’s statistical degrees of freedom
come in four kinds: the nuclear positions, the kind of elements these nuclei belong
to, the isotope, and finally the nuclear spin orientation. While the first two classes
are subject to chemical interactions on the scale of eV, the energy differences due
to both different isotope assignments or nuclear spin orientations are typically
much smaller.3 Therefore these last two classes of degrees of freedom are normally
completely random. For reasons that will become clear below, in practical instances
of neutron scattering one always measures ensemble averages instead of specific
realizations, so the corresponding averaging can be done explicitly.

Consider a spin S1 with quantum number S1. Due to quantum mechanics, it
has a multiplicity of 2S1 +1, where the corresponding states for instance can be
chosen as the eigenstates with respect to the projection of the spin along some
coordinate, which gives eigenvalues {−S1,−S1 +1, . . . ,S1}. Consider now a second
spin S2 with multiplicity 2S2 +1. Of course, the total multiplicity of the system
is (2S1 +1)(2S2 +1). Now also the total spin S=S1 +S2 behaves like a quantum-
mechanical spin. Specifically, according to the relative orientations of S1 and S2

3Only for the lightest elements different isotopic masses can lead to appreciably different chemical
and physical properties via the quantum-mechanical zero-point energy, with heavy water an example.
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its quantum number S can take values between S1 −S2 and S1 +S2 (without loss
of generality assume S1 ≥ S2), and each of those options has multiplicities 2S+1.
As

S1+S2∑
S=S1−S2

2S+1= (2S1 +1)(2S2 +1) (A.2.9)

this is consistent.

Consider now a given nucleus of some isotope with total spin quantum number I
and a neutron with spin 1/2. For random nuclear spin orientation and/or neutron
polarization the sum spin of the compound nucleus can have spin quantum num-
bers I+1/2 or I−1/2. As already mentioned above, the nuclear forces depend on the
relative orientations, giving differing scattering lengths b+ and b−, respectively.
The corresponding multiplicities are 2I +2 and 2I, leading to weighting factors

w+ = I +1
2I +1

and w− = I
2I +1

. (A.2.10)

Taking a step back, if the nucleus is only constrained to be of a given element,
then it can be of any of a number of isotopes, with the weighting factors according
to the isotopical make-up of the sample.

As will be derived later, the uncorrelated randomness of isotope and spin ori-
entation assignements give rise to a perfectly flat (i.e., independent of outgoing
direction) contribution to the scattering, while real-space correlations in nuclear
positions and kinds of atoms lead to characteristic modulations in the scattering.
Colloquially, these contributions are called ‘incoherent’ and ‘coherent’ scattering,
respectively. The corresponding cross sections and phenomenological scattering
are lengths

σcoh = 4π〈b〉2 = 4πb2
coh (A.2.11)

with

bcoh = 〈b〉 (A.2.12)

and

σinc = 4π
(〈b2〉−〈b〉2)

. (A.2.13)

Note that these element-specific statistical quantities actually are not inherent
properties of the elements. They depend on the weighting factors of the different
fundamental scattering lengths, and therefore vary with the isotopical make-up
of the sample. Specifically, for measuring weak signals such as excitation spectra
it can be advantageous to use isotopically pure samples so as to suppress the
isotope-incoherent part and lower the background.

A.2.3 Absorption, activation and transmutation

Guiding neutrons onto a sample can also affect the sample. For thermal neutrons,
the dominant effect is due to the absorption of neutrons. While in X-ray scattering
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the ratio of absorbed to scattered photons is much higher, these photons only
excite the electronic structure. The energy quickly dissipates, so that the net
effect of the X-ray beam is a minuscule heating of the sample, and specifically
for metallic systems typically no significant irradiation effect is discernible. On
the other hand, neutrons are absorbed via their incorporation into some nucleus,
corresponding to an irreversible change of the absorbing nucleus.

The severity of this change depends on the nucleus in question: If the absorption
leads to a stable isotope, then apart from the release of the neutron binding
energy, typically in the form of MeV-range γ photons, no further events will
happen. However, if the resulting nucleus is unstable, it will decay radioactively
at some later time, and potentially a whole decay chain follows. From the neutron
experimenter’s point of view, such a potential activation of the sample in the
neutron beam necessitates care being taken with regard to radiation safety. As
regards samples, as a rule after an experiment the activity of the sample is
measured. Typically, the activity is due to a range of different isotopes with
different half-lifes, where the shortest half-lifes give initially the highest activities.
In order to minimize exposure it can therefore be beneficial to let the sample cool
down4 for a few minutes, then dismount it quickly and keep it for a few days to
months in a lead-walled safe until it is safe to handle. Further, this pertains also
to all parts of the instrumentation exposed to neutrons: here the used materials
are chosen also in order to minimize the induced radioactivity.

Consequently, the critical elements with respect to activation are those that have
a high natural ratio of an isotope with large absorption cross section for which
neutron absorption leads to an unstable isotope, and that decay with a high-
energy γ emission. Out of these, the most problematic are those with half-lifes
on the order of years. In such cases the resulting activity is proportional to the
integrated neutron flux they received, as only an insignificant part decayed during
the irradiation, it would take too long to wait out the decay of activity, while on
the other hand the activity per nucleus is still appreciable, in contrast to isotopes
with half-lifes on the order of millenia. An example is cobalt: its single stable
isotope 59Co has a comparatively large absorption cross section of 37b for thermal
neutrons, and upon neutron absorption it becomes 60Co which beta-decays with a
half-life of 5years to 60Ni, emitting γ quanta of approximately one MeV.

The final effect of induced activity is transmutation, the conversion of nuclei
to other elements. In terms of the physics of the sample, this typically has no
significant consequences, that is, for typical fluxes in neutron experiments the
proportion of converted nuclei is too small to change the properties of the sample:
assuming a typical incident flux of 108 cm−2s−1, even an absorption cross section
of 100b gives only 10−14 absorptions per atom and second, or a proportion of
10−9 transmutated nuclei after an experiment on the order of days. On the other
hand, the large energies released within the sample for each neutron absorption
of radioactive decay event can lead to enhanced diffusive dynamics or radiation
damage affecting a large number of atoms per event, as will be discussed below.

In order to intentionally induce activation, one can place samples within the

4In this regard, a jargon in analogy to aspects of heat is used: Hot samples are those that are
radioactive, and with time they cool down.
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moderator of a reactor near to the core, where the thermal neutron flux is highest.
This is done mainly for three purposes:

• in the context of neutron activation analysis, which will be discussed in the
context of experimental techniques

• for producing radioactive isotopes to be used for medical applications (diag-
nosis and specific internal radiation therapy)

• for neutron transmutation doping of semiconductors

The last item would historically have fallen into the domain of alchemy, whose
ultimate goal was to commute base metals into precious metals. Nowadays it is
indeed possible to transmutate mercury into gold, but, ironically, the converse
process can be effected much easier by placing gold into a neutron beam, yielding
198Hg after β− decay. However, this is just a curiosity, as no natural element has
a value that would make such an operation economically viable.

In contrast, in neutron transmutation doping it is not the bare number of trans-
mutated nuclei, but their spatial distribution: Due to the wide penetration of
neutrons into matter, in this specific case Si, the phosphorus atoms that result
from the reaction

30
14Si+ n→ 31

14Si→ 31
15P+e−+ ν̄e (A.2.14)

have a very uniform distribution. Using pure single-crystalline ingots gives single-
crystalline n-type doped Si with a superior doping homogeneity than what can
be obtained by Czochralski growth or float-zoning with the doping P in the melt.
Materials with such high homogeneity are desirable for power semiconductor
devices, such as for DC to AC inverters necessary for coupling solar plants to
the electrical grid. Its parasitic production in research reactors is economically
profitable, with output in the range of tens of tons per year.

Apart from the cases where a resonance falls into the thermal range, the ab-
sorption cross section of a given nucleus for thermal neutrons can be written as

σabs(v)=σ0
v0

v
, (A.2.15)

with v the neutron velocity. This is the so-called 1/v-law. It corresponds to the
frequency of absorptions being

A = Nt

∫
dv n(v)vσ(v)= Ntσ0v0n, (A.2.16)

where Nt is the total number of nuclei in the target and n = ∫
dvn(v) is the inte-

grated neutron density. In other words, the 1/v-law is equivalent to the absorption
rate per neutron depending only on the density of absorbing nuclei and not on
the relative velocities. This in turn is due to the nuclear potential extending over
much smaller lengths than thermal neutron de Broglie wavelengths. Analogously,
the 1/v-law can be deduced from the transit time of a neutron by a given nucleus
scaling just with this relation. When values of the thermal absorption cross sec-
tion σ0 are given, they are typically defined with respect to a reference velocity of
v0 = 2200m/s.
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A.2.4 Knock-on effects

Apart from issues of activation and transmutation, which directly affect only a
very small part of the atoms in a given sample, the interaction of neutrons with
matter can also lead to more drastic effects, when significant quantities of energy
and momentum are imparted to the sample. This pertains both to direct effects
due to high-energy neutrons as well as to indirect effects due to high-energy
γ, β, β+ or α particles emitted either promptly after a neutron absorption or
radioactively afterwards. In all these cases, a qualitative understanding can be
gained already by a classical discussion in terms of elastic collisions.

The fundamental rule of thumb governing the physics of radiation damage in
metals is that the displacement energy, which is the energy threshold that has to
be imparted to an atom to make it permanently leave its lattice site even without
neighbouring vacancies, is on the order of 25eV. Of course, in reality this will
vary from system to system as well as with the direction. Due to the kinematics
of elastic collisions, for this energy to be transferred onto a typical transition
metal atom, an incident neutron needs at least a kinetic energy of 300eV, an α

particle needs 100eV, and an electron needs on the order of 400keV, where a
relativistic treatment becomes necessary. For heavier atoms, the energies have
to be increased correspondingly. Also γ quanta can transfer their energies to
the lattice, either directly via the electromagnetic interaction with nuclei (which
becomes increasingly important for heavier atoms) or indirectly via exciting an
electron. As the electron energies are in the relativistic regime, the necessary γ
energy is on the same order of magnitude.

The primary knock-on atom is the one that obtained its energy directly from the
high-energy irradiation. On its way through the crystal it will continuously lose
energy due to inelastic processes with the electronic system, but it can also scatter
with the other atoms, thereby transferring energy. If this energy is still above the
displacement threshold, secondary displacements will result.

Since the typical energies of radioactive transitions are on the order of MeV,
the above values show that the β and β+-transitions, which are the normal
decay route of activated nuclei and are often accompanied by γ emission, can
transfer a few times the displacement threshold energy per collision, and therefore
can lead to the displacement of a large number of atoms over small distances,
generating interstitials and vacancies, i.e. Frenkel defects. On the other hand,
an unmoderated fission neutron also in the MeV range can transmit a far larger
energy to a single primary atom. Such high-energy primaries can travel quite far,
specifically when they are scattered into directions parallel to atomic columns,
which is called channeling.

Towards the end of their path a primary will scatter with practically every atom
along the way and therefore dump a very large energy into a comparatively small
volume. This gives rise to the concept of displacement or thermal spikes, where on
the order of 104 atoms are momentarily heated to temperatures on the order of
104 K. Due to the small spatial scales, the time scale of the cooling down lies at a
few phonon cycles, which corresponds to quenching rates that cannot be reached
otherwise. As a consequence, the system typically does not find back to the state
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of equilibrium. Instead, a high local concentration of vacancies and interstitials
remains, perhaps also small-scale dislocation loops, or the sample becomes even
amorphous. This radiation-induced accumulation of defects is called the Wigner
effect. Even when no permanent lattice defects are introduced, irradiation can
lead to athermal, non-equilibrium disordering or radiation-enhanced diffusion.

Around the 1950s, the field of radiation damage physics constituted a main part
of solid state physics. Its relevance came from both the applied aspects with
respect to nuclear reactors, as well as the fact that the recovery of radiation
damage gives direct experimental evidence on quantities such as the migration
enthalpy of vacancies and interstitials, which otherwise are in general inaccessible.
Specifically interstitials have so small migration enthalpies, that Frenkel defects
typically would anneal out during a room-temperature irradiation. However, by
increasing the temperature slowly after irradiation at cryogenic temperatures,
distinct stages can often be discerned in the defect density, which are assigned to
the temperatures where specific defects become mobile. This annealing of defects
is termed recovery.

Recovery is an exothermic process, and at the same time it is thermally activated.
This can have drastic consequences: In graphite, defects become mobile at around
250◦C, releasing the Wigner energy. If a graphite-moderated nuclear reactors is
operated below this temperature, periodic annealings of the moderator have to
be performed. In such an annealing in 1957 at the Windscale Plant in England,
which was of the first generation of reactors designed to produce plutonium for
nuclear weapons, fuel elements ignited due to runaway release of the Wigner
energy, which constituted the first major release of radioactivity due to a reactor
accident.
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Chapter B

Instrumentation and
techniques

B.1 Neutron instrumentation

This section will present the concepts of how free neutrons can be generated,
brought into well-defined conditions, guided towards a sample, and afterwards
analyzed, covering all the instrumental aspects of neutron experiments.

B.1.1 Neutron sources

As was discussed already, the free neutron is unstable against β decay, therefore
in nature neutrons are found only bound in atomic nuclei. The proportion of
neutrons to protons increases with increasing mass number, and further, the
binding energy per nucleon decreases for heavy nuclei. This shows that events
where a heavy nucleus is divided into smaller fragments are exothermic and can
therefore be made to happen comparatively easily, and that the resulting nuclei
will have a higher than preferred neutron ratio and therefore a tendency to emit
those neutrons. Using this fact, free neutrons are generated today in large-scale
experimental facilities by one of two principles.

B.1.1.1 Nuclear chain reactions in reactors

In a simple picture, by imparting energy to a heavy nucleus its shape can be
excited into oscillations. As the heavy nucleus is only a metastable state, there is
a threshold energy above which the amplitude of the oscillation is so large that
there is no restoring force, instead the nucleus splits into two daughter nuclei
that are accelerated away from each other due to the Coulomb repulsion. Such
an event is called nuclear fission. For instance, it can be induced by γ irradiation,
from where it is deduced that approximately 5MeV are the energy threshold for

15
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the relevant nuclei.

With exception of the most extreme neutron-heavy nuclei, a free neutron has a
positive binding energy with a nucleus. In the relevant range, this is also on the
order of 5MeV. Therefore, as the energy freed when a neutron is absorbed goes in
the first place into excitations of the compound nucleus, such a neutron absorption
can potentially lead to fission. If the binding energy is larger than the fission
threshold, thermal neutrons suffice. Nuclei with this property are called fissile. If
the binding energy should fall short of the fission threshold, the deficiency has
to be made up by the kinetic energy of the absorbed neutron. Nuclei that can be
fissioned by fast neutrons are called fissionable. The kinetic energy threshold is
always on the order of 1MeV.1

The most prominent nuclear fuels are the uranium isotopes 235
92U and 238

92U as well
as 239

94Pu. Of these, 235
92U and 239

94Pu are fissile with thermal fission cross sections
of 583b and 748b, respectively, while 238

92U is only fissile with a threshold energy
of 1MeV. Due to the 1/v-law, in the fast regime the high absorption cross sections
have decayed, giving fission cross sections on the order of 1b due to resonances.
Also here the 238

92U cross section is lowest. The reason lies in the fact that the
additional bound neutron can occupy a lower level with spin compensation for the
odd-neutron nuclei 235

92U and 239
94Pu than for the even-neutron nucleus 238

92U. This
pairing effect is on the order of 1MeV and distinguishes fissile from fissionable.

Apart from the daughter nuclei, which are in the overwhelming majority of
cases two of number with a preferred asymmetry of masses, also neutrons can be
released in the initial scission. Further, the resulting daughter nuclei are in highly
excited states, where further neutrons can evaporated off. This happens on rapid
timescales, and the released neutrons are called prompt neutrons. Subsequently,
the still neutron-heavy daughter nuclei will β-decay, where due to the excitation
of the nuclei further neutrons are emitted, the so-called delayed neutrons. In all,
the average number of neutrons emitted from a 236

92U compound nucleus is 2.5,
0.7% of those are delayed neutrons.

This multiplication of free neutrons can give rise to a nuclear chain reaction. When
on average more than one of those emitted neutrons induces another fission event,
the assembly is said to be supercritical. As the timescale of prompt neutrons is
on the order of 10−13 s, an explosive multiplication would result from a prompt-
supercritical assembly. Nuclear reactors are facilities where chain reactions
proceed in a controlled way. This is possible thanks to the delayed neutrons: their
timescales of seconds to minutes allow to keep the reactor in a prompt-subcritical
state by actively adjusted control rods consisting of strongly neutron-absorbing
materials, where the delayed neutrons make up for a time-averaged neutron
multiplication of exactly one. Put another way, a given delayed neutron will
generate on average 1/(1−0.997) ≈ 333 prompt neutrons immediately, and on
average one delayed neutron seconds to minutes later. For keeping the reactor at a
given power, in the prompt-subcritical state only the multiplication of the delayed
neutrons has to be controlled, which is mechanically possible. In other types of

1Note that due to quantum-mechanical tunneling, there is no strict fission threshold. Exciting a
fissionable nucleus will in general always increase the spontaneous fission rate, but the dependence
on energy is quite steep, so that the threshold can be meaningfully defined as the energy where the
fission rate becomes detectable.
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reactors, an inherent reduction of the reactivity with increased core temperature
is used for regulation, or criticality is reached periodically by a rotating neutron
reflector next to the fuel element, leading to a pulsing.

During the operation of a reactor, the reaction products can affect the multipli-
cation rate, typically decreasing it. Such nuclei are called neutron poisons, with
135

54Xe the most prominent example. This isotope has an extremely large thermal
neutron absorption cross section of 3.5×106 b, as it is just one neutron away
from the magic neutron number 82. For the most part, it results from 135

53I by
β decay with half-life of 6.7h. If it does not absorb a neutron, with a half-life
of 9.2h it would decay further to the long-lived isotope 135

55Cs. Under steady re-
actor operations, these decay rates lead to an equilibrium 135

54Xe concentration
(depending on the neutron flux in the reactor), but once the reactor is shut down,
its concentration increases as it is produced faster than it decays. For reactors
without large reactivity margins, this buildup would inhibit a startup for a few
days, until it has decayed again due to the depletion of 135

53I.

As detailed above, neutrons have a high probability of leading to a fission event
either when they are very slow (such that the absorption cross section is large,
relevant for fissile nuclei), or when they are fast (above the fission threshold for
non-fissile fissionable nuclei). Reactors that depend on either of those channels
are called thermal or slow reactors, on the one hand, and fast reactors, on the
other hand. A fast reactor needs a compact arrangement, so that as many as
possible fast neutrons hit the fissionable nuclei, before they have leaked out or
lost their energy. On the other hand, a thermal reactor relies on a moderator,
which slows the fission neutrons by elastic collisions. The moderation concept will
be discussed below. Nuclear power reactors as well as research reactors are nearly
always thermal reactors.

In thermal reactors, it is primarily 235U that keeps the chain reaction going, and
with progressive burn-up also 239Pu. 238U, by far the most abundant uranium
isotope, is a priori detrimental to the chain reaction, as it absorbs neutrons. By
a judicious laying-out of the reactor configuration and choice of moderator, the
comparatively large dimensions of power reactors give rise to a good neutron econ-
omy (i.e. where as little as possible neutrons leak out), so that 235U enrichments
of a few percent, or in some cases even natural uranium, suffice for achieving
criticality. In contrast, for research reactors large neutron fluxes are desirable,
which implies high power densities. These are only achievable by significant
enrichments. High-flux research reactors (that is, those with the main purpose to
deliver high neutron fluxes to scattering instruments) therefore have been laid
out to use high-enriched uranium (HEU), with enrichments up to about 90%. In
the last years, this has started to become a political problem: HEU is defined to
have 235U concentrations above 20%. As also weapons-grade uranium falls into
this category, specifically the US government pushes for the conversion of these
research reactors to low-enriched uranium (LEU). For keeping the neutron flux
at present levels, a nuclear fuel with a higher chemical uranium density would
therefore be needed, development of which is done for instance at the FRM II in
the framework of the HEU-MEU program.
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B.1.1.2 Spallation sources

Spallation denotes the chipping-off of particles from a larger body due to an impact
onto it. Specifically with regard to nuclear physics, it is the emission of a large
number of nucleons after a nucleus is hit by a high-energy particle.

To induce this process, protons are accelerated in particle accelerators to ener-
gies of about 1GeV. As the corresponding wavelengths of 1fm are below the
characteristic size of nucleons, upon hitting a nucleus such a proton does not
form a compound nucleus that is coherently excited, but instead can transfer its
energy to single nucleons. These nucleons can then collide with further nucleons.
With the initial energy on the order of 1GeV, many of them can get energies
above the nucleon binding energy of typically 8MeV, enabling them to leave the
nucleus. This is termed the intra-nuclear cascade. As the struck nucleus is still
in an excited state, in a further process nucleons are evaporated. Finally, the
fast nucleons from the intra-nuclear cascade can also hit other nuclei, giving rise
to the inter-nuclear cascade. The charged protons will be stopped within the
target, but the neutrons can be extracted and used. The heavier the nucleus, the
more neutrons are released, with about 40 neutrons per 1GeV spallation event
in uranium. In most cases, a single heavy nucleus is the product apart from the
emitted neutrons and protons (and to a smaller degree deuterons and α particles),
but with smaller probability the high-energy incident particle can also induce
fission.

Both reactors and spallation sources can either be pulsed or continuous. In the
conventional formulation of neutron techniques, typically the average neutron
flux determines the count rate and therefore the performance of the instrument.
However, as will be discussed below, with time-of-flight techniques essentially all
the neutrons within a short pulse can be used, and therefore the peak flux is the
deciding figure of merit. For both reactors and spallation sources, the thermal
power dissipation limits the achievable fluxes, as high neutron fluxes directly
correspond to a high density of fission/spallation rates and therefore a high power
density. Per fission event, about one neutron is released along with about 200MeV.
For spallation, the ratio is somewhat better. Further, thermal power dissipation
obviously limits the average power. This shows the potential of pulsed sources,
which indeed can supply much higher peak neutron fluxes than continuous sources,
with, e.g., an average flux at the ILL of 1.5×1015 n/cm2s compared to the SNS’
average flux of 4×1013 n/cm2s, but a peak flux of 3×1016 n/cm2s.

B.1.2 Neutron moderation

Immediately after their emission from nuclei, neutrons have energies on the scale
of nucleon binding energies, that is, in the MeV range. Both for keeping up the
chain reaction in thermal reactors as well as for most experimental applications
that use neutrons, these energies are much too high. The concept of letting
such neutrons dissipate their energy by elastic collisions with nuclei is called
moderation. Due to the kinematics of elastic collisions, the average proportion of
the neutron energy that is transferred per collision is inversely proportional to the
nucleus mass. Therefore, the preferred moderator materials are composed of light
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nuclei. Further, the absorption cross section should not be too high (excluding Li
and B), the moderator should be in a condensed phase (excluding He), it should
be in the thermodynamic ground state (excluding molecular matter, which would
suffer severe radiation damage due to the fast neutrons), and it should not be
hazardous (excluding Be). As a consequence, only three materials are used as
moderators, viz. light water H2O, heavy water D2O, and graphite. These different
materials have different neutron path lengths, so depending on the circumstances,
either of the three can be the optimal choice.

B.1.2.1 Statistical distributions

Due to statistical mechanics, after a few tens of collisions the neutrons have be-
come thermalized, that is, the occupation of a given state is given by a Boltzmann
distribution

p(E)∝ e−E/kBT , (B.1.1)

where E is the kinetic energy of the neutron and T is the temperature of the
moderator. In classical mechanics, the state variables are position and momentum
(or equivalently velocity vector), and the density of states is constant over R6.
Specifically, the probability density of neutrons as a function of velocity vector is

Pmod(~v)∝ e−mN|~v|2/2kBT . (B.1.2)

States with a given absolute value of the velocity lie on the surface of a sphere
in R3, therefore the corresponding density of states goes with v2, so that the
probability density as a function of velocity is

Pmod(v)∝ v2e−mNv2/2kBT . (B.1.3)

This is the Maxwell-Boltzmann distribution, and it describes the probability
density of thermalized neutrons within the moderator.

For applications, thermalized neutrons are extracted from a moderator by beam
tubes. Typically, in a sloppy way of speaking, the velocity distribution of the
resulting neutron beam is also called Maxwell distribution. However, care has to
be taken here, as the probability distribution scales with an additional power of v

Pbeam(v)∝ v3e−mNv2/2kBT . (B.1.4)

This can be understood along the following lines: First, in the moderator, no
direction is special, therefore the distribution is isotropic. As a consequence, also
the distribution of neutrons at a given point~r that are travelling towards some
solid angle dΩ is proportional to Pmod(v).2 However, the larger v, the larger the
contribution to the flux due to these neutrons at~r, giving (B.1.4).

The mean velocity resulting from this distribution is

v̄ = 3
4

√
π2kBT

mN
≈ 171

p
T/Km/s, (B.1.5)

2More fundamentally, this follows also from the Gaussian distribution Pmod(~v). Assuming without
loss of generality that dΩ points along the x coordinate, the probability for a given~v to point towards
dΩ goes with v2

x /vyvz , as the three velocity components are independent.
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and its mode (the most probable velocity) is

v∗ =
√

3kBT
mN

≈ 157
p

T/Km/s. (B.1.6)

With (A.1.13) these expressions can be converted to wavelengths.

At research reactors such as the FRM II, the moderator necessary for keeping
up the chain reaction is at room temperature. Some beam tubes directly obtain
their neutrons from this moderator, and the corresponding spectrum is called the
thermal spectrum. Further, within the moderator tank there is both a cold source,
consisting of an actively cooled chamber of liquid D2 at 25K, as well as a hot source,
consisting of a passively heated graphite block at 2200K. Thermal neutrons from
the moderator tank migrate into these secondary sources, thermalize again, and
can then be extracted by other beam tubes, providing neutrons of longer or shorter
wavelengths.

Specifically for pulsed spallation sources, where neutrons are extracted from the
moderator quite early in order to keep the pulses short, but to a lesser degree
also elsewhere, there is a spectral contribution of neutrons that are not yet
thermalized. Fission neutrons can be suppressed by pointing the beam tubes
not directly towards the core, but tangential to it, but such epithermal neutrons,
which are scattered into the beam tubes after an insufficient number of scattering
events, can in principle not be avoided.

B.1.2.2 Figures of merit

For a neutron scattering experiment (or, more generally, for any scattering ex-
periment) the relevant figure of merit is the brilliance of the source. It is defined
as the neutron flux per time, per area, per solid angle and per energy window.
For instance, to derive an order of magnitude estimate of the FRM II thermal
moderator’s brilliance observe that 200MeV thermal energy per emitted neutron
and 20MW thermal power gives a neutron generation rate of 6×1017 s−1. With a
diffusion constant of thermal neutrons in D2O

D = 〈d〉〈v〉
6

≈ 15m2/s, (B.1.7)

where 〈d〉 ≈ 4.5cm is the mean free path length, a neutron density of 6×1015 m−3

at 50cm from the source, assuming an isotropic geometry, results. This gives a
brilliance on the order of

Ψ≈ 1×1014 1
cm2steradsÅ

(B.1.8)

in the maximum of the thermal spectrum. In contrast, synchrotron X-ray sources
have about 20 orders of magnitude higher brilliances.

The importance of the brilliance lies in the fact that it is conserved under optical
manipulations due to Liouville’s theorem, as will be treated in more detail below.
To illustrate this by a simple example, assume a scenario where neutrons are
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extracted via a beam tube of 3m length and entrance and exit windows of 1cm2.
This corresponds to a solid angle of (3.3mrad)2, giving an integral neutron flux
of about 109 neutrons per second and Å through the exit window, or about 107

neutrons per second monochromatized to 1 % bandwidth.

B.1.3 Components of neutron instruments

Having produced free neutrons and brought them to some convenient energy
range by moderation, their phase space volume typically has to be shaped further,
and they have to be brought via the sample to the detector. The pertinent devices
will be discussed here.

B.1.3.1 Neutron mirrors and guides

As will be discussed in more detail later, in many aspects a beam of neutrons
behaves very much like a beam of light. Specifically, a neutron beam (and also
single neutrons, behaving like rays of light) can display phenomena belonging to
the realm of neutron optics, where the path of a ray is determined by refraction
and reflection, following formally the same laws as in (photon) optics.

For neutrons, the wavelength-dependent index of refraction is given by

n =
√

1− λ2ρb
π

, (B.1.9)

where ρ is the number density3 of nuclei with (mean coherent) scattering length
b. That is, for a given material the index of refraction is determined by the
scattering length density ρb with dimension of an inverse squared length. For
example, in natural crystalline Ni the scattering length density has the value
ρb = 4b/a3 ≈ 9.4×1014 m−2, where a = 3.52Å is the lattice constant. For thermal
neutrons of λ = 1.8Å, this gives n−1 ≈ −5×10−6. This a representative case,
showing that deviations of n from 1 are very small and, for the typical case of
positive scattering lengths, are negative. This smallness of the deviations from 1
implies for instance that neutron lenses would be very inefficient for focussing.

A material with n < 1 is neutron-optically less dense than vacuum. As a con-
sequence, if a neutron hits a surface with a glancing angle φ below the critical
glancing angle φc = π−θc, it will be reflected totally. In the limit of small n−1,
the defining relation n = sinθc gives

φc =λ
√
ρb
π

. (B.1.10)

Considering again natural Ni at λ= 1.8Å gives a critical glancing angle of 3.1mrad
or 0.18◦.

3Here ρ is not the mass density! If the symbol n was not taken by the index of refraction, the
number density would better be denoted n.
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The most important application of this theory with respect to neutron instrumen-
tation are the neutron guides. They typically have rectangular cross sections and
consist of glass plates onto which (in the simplest case) Ni is evaporated. In con-
trast to conventional beam tubes, that are essentially just evacuated flight paths
for the neutrons, in a neutron guide the neutrons below the critical wavelength
are guided along via total reflection. They have a number of beneficial aspects:

First, the can be utilized for the quite prosaic goal of having more floor space per
instrument. Where with a beam tube of fixed cross section the flux at the sample
position would fall quadratically with the distance from the source (admittedly,
due to Liouville’s theorem, with a corresponding sharpening of collimation, which
however is useless below a certain value), with neutron guides questions of
flux/collimation are decoupled from the distance from the source. For the same
reason, they are the natural choice for those sections of the beam path in a
time-of-flight instrument that serve to select or analyze energies by the time of
flight.

Further, they can serve as an effective filter both against γ contamination and high-
energy neutrons. Those are not reflected at the neutron guide walls and therefore
automatically decay with the square of the guide length. However, curved neutron
guides are even more effective for this purpose. These are constructed such that
there is no direct line of sight between entrance and exit of the neutron guide, so
that neutrons have to be reflected at least once to pass the guide. This suppresses
the high-energy contribution to the minute amount that corresponds to scattering
at the guide walls.

Finally, focussing neutron guides fulfill the role of lenses, that is, deform the
neutron phase space by trading collimation for focus size. This is done by reducing
the guide cross section towards the exit window.

Building neutron guides with a good performance is not easy: First, it requires a
very precise alignment of the sections of the guides (typically 1m), which of course
has to be stable over duration of operation and therefore poses requirements on
the stability of the building floor. Further, a very good surface flatness is required
for high reflectivities up to the critical angle: if the surface is wavy, then there are
deviations between the glancing angle withs respect to the idealized surface and
with respect to the actual surface, which gives a corresponding smearing of the
ideally sharp transition in reflectivity at the critical angle.

In the early years after their first installation at the ILL in the 1970s, the domain
of neutron guides was only cold neutrons, as the higher critical angles simplify
fulfilling the necessary conditions. This has changed with the introduction of neu-
tron supermirrors in the 1990s: due to the developments in sputtering techniques
(effected by their relevance for computer hard disks), it has become possible to de-
posit high numbers of layers in a very controlled and uniform way. By depositing a
superlattice, neutrons with the corresponding transversal wavevector component
k⊥ can be made to be Bragg-scattered. A supermirror consists now of layers with
gradually increasing d-spacing. In this way, not only neutrons with a given k′

⊥,
but with all k⊥ below some maximum value are Bragg-diffracted, as in a given
depth they find the corresponding d.
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Typically, a sequence of Ni and Ti layers is used, corresponding to the widest span
of scattering length densities. The performance of a supermirror is quantified
by m, which is the proportional increase in critical angle for a given wavelength
compared to a natural Ni guide. Values of m up to 8 have been demonstrated with
up to 16000 layers. However, in this case the reflectivity at the critical angle has
already decreased to 40%.

Note that a significant difference between neutron and photon optics lies in the
fact that neutrons are described by a scalar wave function. Therefore the Brewster
angle has no analogon. However, when a ferromagnetic material is magnetized,
due to the interaction of the neutron magnetic moment with the electrons the spin
states of the neutrons experience different indices of refraction, leading to a range
of glancing angles where neutrons of one spin state are totally reflected while the
others are not, giving a polarizing mirror. This way of polarizing a neutron beam
becomes competitive when employing the supermirror concept.

B.1.3.2 Crystal monochromators and analyzers

As with X-rays, the most obvious way to select neutrons with a given wavelength
out of a polychromatic neutron beam is by utilizing Bragg’s law, that is, to scatter
the beam at a single crystal so that only those neutrons are scattered that corre-
spond to a wavevector transfer coinciding with a reciprocal lattice vector. However,
while this gives the correct qualitative idea, actually the kinematical theory of
scattering is inadequate to quantitatively describe the effect of scattering at a
perfect single crystal, and the dynamical theory has to be used (see the pertinent
discussion below).

Consider a perfect single crystal in Bragg (or reflection) geometry, that is, where
the incident beam leaves the crystal through the same surface as it entered. In
the dynamical theory, the intensity of the incident beam is reduced along the
way into the crystal, as it is transferred into the scattered beam. Therefore,
there is only a finite penetration depth (this effect is called extinction), and as
a consequence the Bragg condition will not need to be ideally fulfilled. In the
dynamical theory neglecting absorption, in this ideal case the total incident
intensity is reflected for a finite range of wavelengths. On the other hand, the
less frequent Laue (or transmission) geometry corresponds to the case where the
crystal has a finite thickness and the scattered beam exits the crystal on the other
side. Here dynamical theory would lead to a distribution of intensity into the
transmitted and scattered beam with equal weights.

Different from the X-ray case, even with the finite widths of reflexes in dynamical
theory perfect single crystals would make very inefficient neutron monochroma-
tors, as their angular widths of acceptance are much smaller than the typical
beam divergences. Therefore, imperfect crystals with mosaicities η around 1mrad
are typically used. These can be seen as polycrystals with very strong texture,
that is, where the crystallites have Gaussian distributions of orientation with
standard deviation η. With finite η, neutrons from a larger volume in phase space
will eventually hit upon a crystallite that scatters them, giving worse resolution
(which, as mentioned above, is no problem) and higher scattered intensities.
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The resulting width in energy is

∆E
E

=∆θ cotθ, (B.1.11)

with

∆θ =
√√√√ (α2

i +α2
o)η2 +α2

i α
2
o

α2
i +α2

o +4η2
, (B.1.12)

where θ is the angle with respect to the scattering planes and αi and αo the
incoming and outgoing Gaussian acceptances or divergences. This shows that η
can be increased up to the smaller value out of the incoming and outgoing accep-
tances without hurting the resolution. It also shows that the energy resolution is
optimal when θ =π/2, that is, in backscattering. This is used with backscattering
spectrometers.

To increase intensities further, one can bend the reflecting lattice planes (or
equivalently compose the monochromator of properly oriented small plane single
crystals), which works like a focussing mirror. Again due to Liouville’s theorem,
one has to pay for the increased intensity by increased divergences. However, nor-
mally the conditions on wavevector resolution are more stringent in the scattering
plane, which typically is horizontal, than in the perpendicular plane. There-
fore vertical focussing is often used, but also double focussing (i.e. vertical and
horizontal) setups are used.

An important point to note is that if a given wavevector transfer corresponds
to a reciprocal lattice vector, then so does every integer multiple of it. This
means that neutrons of wavelengths λ/n for integer n will fulfill the scattering
condition for a monochromator that is set to a nominal wavelength of λ, giving
higher-order contaminations. Therefore, one typically uses filters in addition to
monochromators (see below). It can also be an option to use the (lll) reflection
of a crystal with the diamond lattice with odd l. As the structure factor of
the (lll) reflection for even l vanishes, the first contamination here is λ/3, with
correspondingly lower intensities.

The preferred monochromator material has a small incoherent scattering cross
section and a small absorption cross section. Further, it should either have
inherently a high Debye temperature (which follows from strong binding and
small atomic masses) or it should be actively cooled, so that the thermal diffuse
scattering contribution is low (see the discussion of phonons). Often, the main
problem in obtaining good neutron monochromator crystals is not so much to
get large single crystals, but rather to get good imperfect crystals with large
and controlled (that is, isotropic Gaussian) mosaic spreads. Note that pyrolytic
graphite, a material that is often used as a neutron monochromator, is actually
not a crystal at all, as it consists of graphite planes that are regularly stacked
above each other, but that have no in-plane orientational relation. Therefore, all
reflections apart from the (00l) families are not Bragg peaks, but rather rings
in reciprocal space. This has also very desirable consequences for its use as
wavelength filter.

Monochromators can additionally function as polarizers. For ferromagnetic ma-
terials, there is a scattering contribution due to the electronic polarizations in
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addition to the nuclear contribution, the sign of which depends on the neutron
polarization. For a specific choice of materials and wavelength (note that the
magnetic form factor, in contrast to the nuclear form factor, decays with wavevec-
tor transfer), those two contributions can be made to cancel exactly for one spin
channel, so that only the other channel is scattered. The most important material
here is the Heusler alloy Cu2MnAl.

Finally, where monochromators select neutrons of some given wavelength out of a
polychromatic beam before it hits the sample, in quasi-elastic or inelastic neutron
scattering also the outgoing neutrons have to be passed through such a device for
resolving energy differences, as neutron detectors in the thermal regime have no
inherent energy resolution.4 These are called analyzers, and all aspects discussed
here with respect to monochromators apply there as well.

B.1.3.3 Mechanical velocity selectors and choppers

Where in the section above the wave nature of neutrons has been utilized to select
neutrons of a certain energy, the same is also possible with the particle nature.
Devices operating in this mode are called mechanical velocity selectors. They are
closely related to choppers, which have the primary purpose to select neutrons
that pass a certain point at a certain time, so those will also be treated here.

The first mechanical velocity selector for neutrons consisted of two disks rotating
on a common axis, where each disk was made up of alternating stripes of alu-
minium and cadmium sectors with shifted phase. For a given rotation speed, only
neutrons with given velocities find an aluminium strip at the second disk after
passing an aluminium stripe at the first disk. In essence, this is the same idea as
used in Fizeau’s determination of the velocity of light.

The problem with such a device is that due to the stroboscopic effect also neutrons
with l times the fundamental wavelength for l odd can pass the velocity selector
by skipping a few aluminium stripes. Today, such velocity selectors therefore
have the form of a drum with helical absorbing blades on it, thereby eliminating
higher-wavelength contaminations. Obviously, the transmitted spectrum has a
relative width of s/l, with s the distance between blades and l the length. The
transmitted velocity of such a helical velocity selector is continuously tunable by
the rotational speed, which typically is a few hundred Hz.

A device consisting of a single disk of a Fizeau-type velocity selector is called a
chopper due to its action of chopping a continuous beam of neutrons into pulses.
It is used for providing the timing structure for time-of-flight instruments on con-
tinuous sources, for better defining the pulsing of pulsed sources, or for reducing
frame overlap. Typically such choppers have only a single transparent slice, and
for good definition of the window of transmission they are combined with a fixed
slit immediately next to them or even a second counter-rotating chopper disk.

Another principle is constituted by the Fermi chopper: here the axis of rotation
is not along the beam, but perpendicular to it, and in the original realization the

4Of course, this does not apply to time-of-flight or spin-echo instruments, where the energy is
resolved via the velocity encoded in time.
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transmitting element was a bore through the rotating block of absorbing material
perpendicular to the axis of rotation. In addition to the pulsing, in this realization
it provides also a cutoff towards low velocities, as the time window that a straight
flight path is open is shorter than the time slow neutrons would need to pass.
Today, Fermi choppers typically use Soller-type collimators (see below). For curved
collimators, the chopper functions also as velocity selector, as in this case there
is only a given window of velocities that can travel through the rotating curved
collimator on a straight path. Further, a Fermi chopper can directly be used for
temporal focussing, so that neutrons of different velocities arriving from different
directions arrive at the detector at the same time, assuming elastic scattering at
the sample.

Choppers typically have to be operated at the limit of mechanical stability in order
to give desirable timing structures. In general, this is most easily fulfilled for slow
neutrons. Due to the compact design, Fermi choppers show the best performance
in this regard.

A related device that is able to give very sharp pulses also at short wavelengths is
a rotating crystal chopper, which reflects a neutron beam that rotates like the light
beam of a lighthouse. At a given take-off angle, the resulting pulse has a length
of equal to the divergence (determined by incident collimation and mosaicity)
divided by the rotating frequency.

B.1.3.4 Collimators

At various stages of a neutron scattering instrument, for a good performance it is
necessary to control the angular divergence of the neutrons. In principle, on the
source side this can directly be effected by the dimensions of the beam tube, with
the exit window defining the size of the spot on the sample, and the beam tube
length and entrance window dimensions defining the divergences in horizontal
and vertical dimensions. Apart from the fact that an analogous approach on
the detector side would need to dictate the size of the detectors (which often are
not freely scalable), it would also be impractical due to the necessary beam tube
lengths and the fact that the divergences cannot be varied after the construction
of the instrument. Therefore, one rather uses dedicated collimators, which cut out
the desired volume of phase space (in this case, specific distributions of directions
in the horizontal and vertical dimensions).

A Soller collimator (also called Soller slits) consists of a stack of parallel blades
coated with an absorbing material. Only neutrons with flight paths that do not
touch any of those blades can pass, which in the ideal case of infinitely thin totally
absorbing blades leads to full transmission for neutrons that are parallel to the
blades, decreasing linearly to zero for angular deviations

|∆φ| =α= w
L

, (B.1.13)

with L the length of the blades along the beam path and w their separation. If for
a given collimator the value for the divergence is quoted, it typically pertains to α
as defined here, which is also the full width at half maximum of the triangular
transmission.
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Typically, at a given instrument a number of different collimators can be used,
allowing to configure the divergence and thereby trading intensity for resolution.
Also, it decouples the divergences in horizontal and vertical dimension. As men-
tioned already above, typically one wants small divergences only in the scattering
plane, that is, in the horizontal dimension, so in most cases Soller collimators are
oriented vertically.

In effect, a Soller collimator works as a number of parallel beam tubes with
emitted beams that overlap at the sample. Obviously, one can consider also the
analogous concept with neutron guides, which can be realised by evaporating
nickel onto the absorbing blades. Naturally, as in the case of a neutron guide this
gives rectangular transmission functions. Further, such a device consisting of
curved blades can be used as a beam bender, being much more compact than a
curved neutron guide, as the smaller blade separations guarantee much shorter
paths between successive total reflections on the outside blades and therefore
allow to use correspondingly smaller radii of curvature.

B.1.3.5 Energy filters

The main purpose of energy filters is to suppress unwanted minor components
in a neutron beam whose energy spectrum has already been shaped in some way.
For instance, while a crystal monochromator selects neutrons within a certain
quite sharp window of wavelength around the nominal value, due to its working
principle neutrons with an integral multiple of momentum are scattered in the
same direction. Such contaminations could increase the background in neutron
scattering experiments, or worse, lead to spurious peaks.

In principle, the filtering effect can be due to scattering processes or absorption
processes. A neutron guide is effectively already a low-pass filter due to the
variation of the critical angle of reflection with neutron energy. In the same way,
high-pass filtering can be achieved by passing the beam through a mirror at low
glancing angle and utilizing the transmitted neutrons.

A very effective kind of low-pass filter with a sharp cut-off is given by a sim-
ple piece of polycrystalline material with high coherent scattering cross section.
Due to Bragg’s law, neutrons can be scattered elastically with respect to those
wavevector transfers that coincide with a reciprocal lattice vector of the crystal.
For a polycrystal, these reciprocal lattice vectors lie on concentric spheres with
some defined radii around the origin of reciprocal space. On the other hand, in
elastic scattering the possible wavevector transfers for a given wavelength fall on
a sphere in reciprocal space, the so-called Ewald sphere, which has the origin on
its pole. As a consequence, for large wavelengths the Ewald sphere is too small to
reach any sphere of reciprocal lattice vectors, and no elastic scattering will result.
However, for shorter wavelengths the Ewald sphere starts to overlap with the
spheres of reciprocal lattice vectors, meaning that there will be some crystallite
in the polycrystal with respect to which the scattering conditions are fulfilled.
In effect, this gives a transmission function with a sharp cutoff at some critical
wavelength below which only a very reduced amount of neutrons is transmitted,
which is given by λc = 2dmax, with dmax the maximum spacing of lattice planes
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(for instance a/
p

2 in a bcc crystal and a/
p

3 in an fcc crystal). Due to the lattice
spacings of available crystals, λc is typically in the cold neutron region, with the
smallest values of 3.96Å in Be and 4.38Å in BeO.

For optimal transmission above the threshold, such polycrystalline filters often
have to be cooled well below their Debye temperature to suppress inelastic scatter-
ing, which is not tied to the Bragg condition. On the other hand, for filtering in the
epithermal regime one can rather use single crystals out of the Bragg condition
and rely on inelastic scattering, with sapphire (Al2O3) as the most prominent
representative, having high transmissions above 1.0Å and transmissions below
3% below 0.4Å.

In the thermal region, single crystals of pyrolytic graphite are the most prominent
beam filters. Oriented with the c-axis normal to the beam, they transmit neutrons
of λ= 2.36Å quite efficiently while strongly suppressing λ/2 and λ/3 contributions.

At higher energies, resonant absorption becomes attractive as filtering method.
For instance, 239Pu has a resonance around 300meV, which can be used to sup-
press the λ/2 (i.e. 4E) contribution of a monochromator set to 75meV, which
corresponding to λ= 1.04Å.

Note that such filters can also make efficient energy analyzers. For instance, the
density of states of vibrations of an incoherent scatterer (that is, in most cases
hydrogen) can be determined by scanning the incident energy by a monochromator
and detecting the outgoing radiation after a polycrystalline graphite filter (backed
up by Be for better suppression of higher energies). Only energies below 2meV
can pass such a filter, which corresponds to a satisfactory energy resolution, and
much higher detector acceptances than in the case of a single-crystal analyzer can
be used.

B.1.3.6 Polarizers

Just as a monochromator yields a monochromatic beam by discarding all other
neutrons, a beam can be polarized by selecting only neutrons of one of the two
possible spin eigenstates (remember that the neutron is a spin 1/2-particle). The
two microscopic effects that can be utilized for this end are the spin-dependent
coherent scattering cross section due to the unpaired electrons in ferromagnetic
materials or spin-dependent absorption cross sections.

As regards the first option, all principles have already been treated above in the
non-spin-dependent cases. Specifically, ferromagnetic monochromators can be
tuned to have a vanishing structure factor for one spin channel, reflecting purely
neutrons of the other spin state, conversely the efficiency of the Bragg-cutoff of
a ferromagnetic polycrystalline filter depends on the relative spin orientation,
transmitting preferentially one spin state, and finally the neutron index of refrac-
tion of a ferromagnetic material depends on the spin state, giving different angles
of total reflection. The last effect is best exploited by Fe-Si-supermirrors, most
effective a cold wavelengths. However, this becomes even more practicable when
using a ferromagnetic beam bender (corresponding to a curved Soller collimator),
decreasing the dimensions from a few meters for a supermirror (due to the small
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angles of total reflection) to a few tens of centimeters.

Polarizing absorption filters rely on resonances in the low-energy region, with
149Sm as an example. Such filters rely on the orientation of the nuclear spins,
which due to the energy scale of nuclear moments in a field reaches significant
values only at the highest achievable fields in the range of tens of mK. Another
option is to use 3He gas, which can be polarized by optical pumping with a laser
at low pressures. For good polarizing efficiency at practical dimensions, the gas is
then compressed above atmospheric pressure. In this state, the polarization of
the 3He nuclei decays on the order of days. At a 3He polarization of only 55%, a
beam polarization of 80% at transmissions of 20% can be reached.

B.1.3.7 Spin guiding and manipulation

In a magnetic field, a magnetic dipole moment ~µ experiences a torque

~τ=~µ×~B = γ~J×~B, (B.1.14)

with ~J the vector of angular momentum and γ the gyromagnetic ratio. As

d~J
dt

=~τ, (B.1.15)

under a constant field this leads to Larmor precession of the magnetic moment
around the axis of the field, with the Larmor angular frequency

ωL = γ|~B|. (B.1.16)

The neutron gyromagnetic ratio is γN = 1.832×108 rads−1 T−1, therefore for in-
stance at fields as small as B = 0.1mT the neutron magnetic moment would
precess with a frequency of about 2.9kHz. The earth’s magnetic field has this
order of magnitude, and various electrical appliances around a neutron beam
can increase the background field even higher. As a consequence, without taking
precautions the well-defined polarization state of a neutron beam after a polarizer
would quickly be lost.

The solution lies in having a guide field along the path of the neutrons. As
long as this field is significantly larger than the magnetic background noise,
the neutrons will precess around this field with conserved component along the
guide field. Further, the polarization of the neutrons will follow a turning of the
guide field if the rate of turning is much slower than the Larmor period, which
is called adiabatic guiding. Assuming a guiding field strength of B = 1mT and
thermal neutron velocities of 2200m/s, during the Larmor period of t = 0.034ms
the neutrons cover distances of 7.5cm. In this situation, turning the field over
distances on the order of 1m would therefore happen adiabatically.

For scattering techniques utilizing polarized neutrons, it can be necessary to turn
the polarization within a small distance, typically by angles of π/2 or π. Such
devices are called π/2- or π-coils, the latter also spin flipper.

There are a number of principles how such devices can be built: The first is to use
a radiofrequency resonance coil as in nuclear magnetic resonance, which shall not
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be covered in more detail here. Second, a current sheet spin-rotator consists of
a thin sheet of metal with a current parallel to the guide field along it (for now
assumed to be vertical). This leads to a configuration of a field slowly turning away
from the guide field in the sheet plane by an angle of θ. As a neutron approaches
the sheet, it follows this turning adiabatically. Passing through the sheet, it finds
itself in a field in direction of −θ with respect to the guide field, and therefore
aquires a further angle of θ as it adiabatically follows the field back to the vertical
orientation. For a perfectly thin current sheet, in contrast to the radiofrequency
resonance coil, this gives turning angles that are independent of the neutron
velocity, as long as it is small enough for the neutrons to be able to follow the field
adiabatically on both sides of the spin current sheet. However, the necessary large
stray fields of this device render it disadvantageous.

In neutron scattering instrumentation, a popular type of spin rotator is the so-
called Mezei coil, having the significant advantage over the radiofrequency coil in
being a static device. It is a coil of rectangular cross section, oriented perpendicular
to the neutron flight path. Inside the coil, the field is at an angle θ to the guide
field, while outside there is no interference with the guide field. When for a specific
neutron velocity the passage time through the coil is equal to half the Larmor
frequency, the neutrons exit the coil with an aquired angle of 2θ with respect to
the guide field.

B.1.3.8 Shielding

Not only for reasons of radiation safety, but also for reducing the background
count rate in the detectors, it is necessary to suppress all possible flight paths
of neutrons apart from the intended one from the source via the sample to the
detector. In contrast to the case of X-rays, where one just has to generously
distribute lead, shielding a neutron beam involves distinct physical processes,
each of which needs for optimal efficiency different kinds of materials.

First, as neutron absorption cross sections vary as 1/v, specifically the fast neutron
contribution has to first lose its energy by elastic collisions.5 The singularly most
effective element here is hydrogen, both due to the large incoherent scattering
cross section and the small mass, enabling large energy transfers in a single
collision.

Neutrons thus slowed down can be effectively absorbed. Elements with very
high capture cross sections are Cd and a number of the rare earths, with Gd the
most prominent example. These elements have isotopes with resonances in the
thermal region, e.g. for 113Cd at 178meV, while it is practically transparent above
500meV. In addition, those resonant absorption processes generate high-energy
prompt gamma radiation. Therefore, one often rather uses the light elements Li
and B, which also have rather large non-resonant capture cross sections (10B has
σabs = 3835b at the standard thermal energy of 25.3meV), and where the prompt
gamma radiation is much weaker.

5Of course, microscopically this is the same process as in moderation, but different from the case of
neutron moderation, the energies will not reach the thermal distribution here, as the neutrons will be
absorbed before.
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Finally, the gamma radiation due to the absorption of neutrons in the shielding
or in the sample has to be absorbed in turn. In the MeV-range, the attenuation
coefficient is roughly proportional to the mass density, where a few cm thickness
of lead are necessary for a reduction by an order of magnitude.

In reactor neutron sources, the shielding around the moderator tank consists
typically of about 1m of heavy concrete, with added iron and boron. Around
the detectors as well as separating the instruments from the control hutches on
the ground floor thinner shielding is used, with boronated plastics often a main
component. In this way, in modern facilities the gamma background is decreased
to levels comparable to the natural background.

B.1.4 Neutron detectors

The final task in neutron experimentation is to detect them. Here, two of the
neutron’s properties that make them so valuable as scattering probes render the
task of their detection much harder compared to the X-ray case. Specifically, on the
one hand the charge neutrality that leads to small absorptions in general samples
would also lead to small detection efficiencies. Therefore, neutron detectors
invariably have to contain elements (or even isotopes) with anomalously large
absorption cross sections in the relevant energy ranges. On the other hand, their
kinetic energy is on the order of magnitude of phonon energies,6 which shows that
it is in principle impossible to directly detect their kinetic energies. Thus, it is the
MeV-range energies after capture reactions that are detected, which also implies
that there are no neutron detectors with inherent energy resolution apart from
the effect of resonances in the capture cross sections.

Apart from the large cross sections, one would like the capturing nuclei to follow
the 1/v law to a sufficient degree, as well as to emit charged particles (with
correspondingly small free path lengths in the detector). The most prominent
isotopes with respect to these criteria are 3He, 6Li and 10B, with the first emitting
a proton and the other two an α particle. He and B (the latter in the form of the
toxic gas BF3) are typically used in gas detectors, while Li is used in solid-state
detectors that employ the scintillation effect.

A popular type of detector is the gas tube detector. It consists of a tube of a
conducting material and a few cm diameter, with a wire along the tube axis that
is isolated against it. When now a neutron is absorbed in the detector gas, the
emitted high-energy particles will ionize the gas. Keeping the wire at a positive
voltage against the tube, the resulting electrons will be accelerated towards the
wire and the resulting charges can be detected, with the number of the generated
electrons being proportional to the energy deposited in the gas. For not too
high voltages (a few keV), the accelerated electrons lead to further ionizations
and thereby increase the proportionality factor, giving better energy resolution.
In this proportional region, the detector can therefore selectively count events
with energies characteristic for the nuclear reactions and discriminate against
background gamma events. Dead times are on the order of one microsecond.

6That is, apart from fission neutrons, which however cannot be used as probes in most techniques.
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For many neutron scattering techniques, it is desirable to have a detector covering
a large solid angle, where also the positions of the neutron absorption events
can be detected. A trivial possibility is to arrange a number of counters next
to each other. For gas tubes as described above, this gives a detector with one-
dimensional position resolution. However, by making the anode wire resistive, also
information of the position along the detector axis is can be gained via the division
of the charges on either end of the detector tube. Typically, the corresponding
resolution is worse than the spacing between adjacent detector tubes, giving
anisotropic two-dimensional resolution. Such multi-detectors are therefore suited
for requirements as in powder diffraction.

An example for an isotropic gas detectors is the multi-wire proportional counter,
where a fine mesh of anode wires is mounted between cathode plates. These
cathode plates are segmented into conducting strips, where the two plates have
perpendicular orientation of the strips. As a consequence, the two coordinates
of the detection event can be determined by detecting which strips received the
most charge. Such detectors are suited for instruments with isotropic resolution
requirements such as small-angle scattering.

In recent times, there is a tendency to move away from 3He. This is because its
main source is from the decay of 3H used in nuclear weapons. With the reduction
in nuclear stockpiles since the end of the cold war, the supply is correspondingly
decreasing, and prices have risen drastically. However, also the other option of
BF3 is problematic, as it forms hydrofluoric acid when it encounters water.

Solid-state detectors employ the scintillation effect, which is that specific ionic
crystals emit flashes of light around the optical regime when energy is deposited
into them. This process normally relies on a third element as dopant, so that
the crystal is transparent to the radiation created at the defects. For neutrons,
6Li-doted ZnS is typically used as scintillator. The time resolution of such de-
tectors is not governed by the motion of ions, but rather by the electrons in the
photomultipliers used to convert he light into currents. As a consequence, they
can be much faster than gas detectors, and are therefore suited for pulsed sources.
A disadvantage is the worse energy resolution, making them sensitive to a gamma
background.

Apart from the possibility of arranging independent scintillator crystals/photo-
multipliers to make up a position-sensitive detector, an Anger camera consists of
a large flat scintillator, to which a regular array of photomultipliers is coupled.
Just as with the multi-wire counter, also here the position can be determined by
computing the center of mass of the signals of the respective photomultipliers.

The image plate principle, which is a routine technique for X-ray detection, can
also be used for neutrons by coating or doting the material with 6Li. An image
plate consists of a phosphorescing material, integrating the absorbed radiation.
After the exposure, a laser beam is rastered over the plate, emitting the stored
energy as optical light via photostimulation. As in principle with all integrating
detectors, there is no way to discriminate against gamma radiation. Image plates
are advantageous for applications where good resolution over large solid angles is
needed, but no time or energy resolution, such as for protein crystallography.
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Apart from the main detectors that detect the neutrons exiting the sample, for
techniques where for instance the outgoing energy is scanned over time it is
necessary to keep track of the instantaneous flux. This is done by beam monitors.
Such devices have to have a very low efficiency in order not to attenuate the
incident beam.7 For this purpose, fission chambers can be used, where the flux is
determined by the ionization currents of, for instance, low-pressure UF6.

B.2 Neutron-based experimental techniques

As has transpired above already a few times, the neutron has a number of proper-
ties that make it a very useful probe for properties of condensed matter. First, its
wavelength can be chosen to be on the order of interatomic separations. While this
fact is not specific to neutrons, it is a very happy coincidence that such wavelengths
correspond to neutrons with energies as can be extracted from a moderator around
ambient temperature. From this it follows that the change in neutron energy due
to the creation or annihilation of a typical thermal excitation of the sample is on
the same order of magnitude as the energy of the neutron, and therefore can be
conveniently resolved. Further, the absorption of neutrons in matter is often weak,
leading to large penetration lengths. Finally, the value of the neutron’s magnetic
moment makes magnetic aspects of the system as easily observable as structural
aspects. The main experimental techniques how these properties can be exploited
to probe condensed matter will be presented in their principles here.

The focus in the presentation will lie on scattering methods, which is also where
the major part of the neutron community is active. In these methods, the aim is
to determine the probabilities for incoming neutrons to be scattered into distinct
outgoing states, which are quantified by differential scattering cross sections.
These methods can be divided into diffractometry, where only the change in
neutron wavevector (called wavevector transfer Q) is of interest, and spectroscopy,
where also (or only) the change in energy is of interest. Conversely, scattering
methods do not resolve absolute positions.8 On the other hand, for instance in
radiography it is the absolute position that is the primary independent variable.

Generally, there are two principally different ways to perform neutron scattering
experiments. First, there is the conventional approach with a continuous beam,
which is analogous to all methods of X-ray scattering. However, as neutrons are
massive probe particles, there is a correspondence between their velocity and
energy. As a consequence, when one has a pulsed beam (either intrinsically at a
pulsed source or by chopping a beam from a continuous neutron source), one can
forego one step of enforcing narrow energy windows in the incident or outgoing
neutrons and instead use the full spectrum at once and determine energies via
the time of arrival at the detector. This is called the time-of-flight approach. The
specifics of these methods will be discussed at the example of powder diffraction,
but they hold analogously also for the spectroscopic methods treated later.

7The incident flux is typically orders of magnitude larger than the scattered signals, so counting
statistics are no issue here.

8Of course, an inhomogeneous sample can be scanned through the beam, giving spatially varying
differential cross sections.
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B.2.1 Powder diffractometry

Diffractometry is the study of the probabilities for incident neutrons to experience
changes in wavevector when interacting with a sample. In powder diffractometry,
the sample is a fine powder of crystalline material, but with some caveats also poly-
crystalline samples can be used. As all orientations of grains are equally probable,
only the absolute value of the wavevector transfer, a one-dimensional quantity,
is the independent variable. The defining features of a powder diffractogram are
the intensities, positions and shapes of the Bragg peaks, which correspond to
elastic scattering. Inelastic scattering, for instance due to thermal oscillations
of the atoms (phonons), give smoothly varying intensities over all of reciprocal
space, which in this regard is subsumed into the background of the signal. As a
consequence, the neutrons that contribute to the signal, that is to the Bragg peaks,
can safely be assumed to have had equal energies on the incident and outgoing
side.

For a given elastically scattered neutron, the absolute value of the wavevector
transfer is determined by the scattering angle

|Q| = 2|k|sin(2θ/2), (B.2.1)

where k is the wavevector of the neutron (and which is determined by its direction
of propagation and its energy or equivalently wavelength).

At continuous beams, the energy is defined typically by a crystal monochromator.
In practice, this is always done on the incident rather than the outgoing side, as
this first reduces the neutron flux on the sample (and consequentially activation
and background), and second allows to use a multidetector for optimal neutron
economy.9 Specifically, often a bank of vertically arranged gas tubes is employed.
The resolution is defined by Soller collimators before and after the monochromator,
as well as by a collimator in front of each gas tube. This greatly reduces the
background and gives resolutions that are independent of the diameter of the
sample.

For having high count rates, high sample volumes are desirable, with dimensions
typically a few cm in height and 1cm in diameter. Resolution can be traded for
intensity in some degree via the collimations and the used wavelength. Typical
resolutions are on the order of 10 arc minutes. For practical reasons, the angular
stepping of the respective gas tubes is on the order of a few degrees, so in order
not to miss any features of the signal, one drives the multidetector in steps on
the order of the resolution. It is advisable to use some overlap here: As the
distinct gas tubes will have different counting efficiencies as well as unavoidable
misalignments of their collimators, such a multidetector has to be calibrated.
The adequacy of the calibration can be ascertained by checking whether the
overlapping curves coincide. As a sophistication, also the (low-resolution) vertical
position of the events can be determined by position-sensitive gas tubes. This
allows to correct in first order for the peak asymmetries due to the incompatibility
of curved Debye-Scherrer cones and straight gas tubes.

9In contrast, in X-ray diffractometers normally only a single detector is scanned around the sample,
as statistical precision is no issue here.
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For pulsed beams, one can use a much larger spectral window of the incident
beam. Conceptually, as for a given pulse the neutrons were emitted at the same
known time, all neutrons that hit the detector at some specific later time have the
same known velocity, given by the path from source to detector divided by the time
of flight, and thereby energy and wavelength (as all scattering is assumed to be
elastic). Thereby, the instantaneous readout corresponds to the diffractogram for
some specific wavelength. At a later time within the same pulse, the diffractogram
for a longer wavelength is obtained. In practice, all these data are reduced in
software to a single diffractogram with Q as the independent variable. As a
consequence, also the expressions for the Lorentz factor (to be defined later) and
peak shape are more complicated than for diffractometry with a monochromated
beam.

A concept that is critical to the successful operation of a time-of-flight instrument
is frame overlap: This means that with a finite pulse repetition rate, there is
some critical velocity so that slower neutrons would arrive at the detector later
than the fastest neutrons from the following pulse. Of course, this would give a
contamination of the data and therefore has to be prohibited. By doing the math,
one arrives at the result that for given length of flight path L and pulse repetition
frequency ν, there is a maximum window of incident wavelengths without frame
overlap

∆λ= h
mnLν

≈ 4000Åm/s
Lν

, (B.2.2)

which can be enforced with velocity-defining choppers. In diffractometry one typi-
cally wants much better resolution than in spectroscopy, which implies long flight
paths. In order to avoid frame overlap, one therefore has to work at quite narrow
wavelength bands or use choppers to remove whole pulses from the incident beam,
thereby decreasing ν. Depending on the range of scattering angles covered by the
detector, it can be advantageous to perform experiments at different wavelength
bands for different ranges of Q to be probed with high resolution and statistical
accuracy.

B.2.2 Single-crystal diffractometry

If a single crystal of a given system is available, its elastic scattering signal
conveys more information than the corresponding powder signal. Specifically, the
assignment of peaks to reciprocal lattice points is trivial, and anisotropic peak
shapes are directly accessible.

The classical instrument for such high-precision measurements is the four-circle
diffractometer. Here the crystal is mounted on a Eulerian cradle, which allows
to turn the crystal into any orientation. In the typical configuration the crystal
is mounted on the goniometer head, with the degree of freedom corresponding
to a rotation with respect to this goniometer head conventionally called φ, the
goniometer head itself can drive around the χ circle, so that the crystal always
stays in the center of the χ circle, and finally the plane of this circle can be rotated
around the vertical axis, corresponding to ω. The fourth circle is described by the
position of the point detector in the horizontal plane with scattering angle 2θ. With
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a monochromatic incident beam and narrow collimation, such diffractometers give
the best Q resolution achievable, albeit at the cost of long measurement times.

A disadvantage of the four-circle diffractometer is its incompatibility with any
non-ambient sample environments, such as cryostats, furnaces, pressure cells or
magnets. Here the normal-beam geometry constitutes an alternative, where the
only degree of freedom of the sample is a rotation around the vertical axis φ, which
can either be performed by mounting the sample on a rotatable stick that reaches
into the sample environment cell, or rotating the sample environment with the
sample. The third degree of freedom necessary for reaching all of reciprocal
space at fixed wavelength is constituted by rotating the detector arm out of the
horizontal plane.

In such point-detector instruments, only the regions of interest, that is, often
only the vicinities of the Bragg peaks (the positions of which are known once the
crystal is oriented), are scanned. A more complete survey of reciprocal space at
the cost of worse resolution is obtainable by using an area detector. In the extreme
opposite case, also the requirement of monochromatization is dropped, leading
to the Laue method. Here an incident white beam is used in order to fulfill the
scattering conditions for all reflexes at the same time. In this way, samples can
quickly be checked for single-crystallinity as well as be oriented. However, if a
given reciprocal lattice vector fulfills the scattering conditions with some wave-
length, then any multiple of it will also fulfill it with a correspondingly reduced
wavelength. These intensities coincide on the detector, therefore prohibiting a
quantitative determination of peak intensities.

The so-called quasi-Laue method consitutes a middle ground. Here a narrow
incident wavelength band is used, which for not too dense reciprocal crystal
lattices ensures the absence of overlaps and thereby allows the determination of
peak intensities at high efficiencies. However, such a method suffers from quite
high background levels due to the diffuse scattering in the regions between the
Bragg peaks.

With pulsed beams and the time-of-flight method, it is of course possible to
cover whole regions of three-dimensional reciprocal space with one crystal setting
without overlap in the Laue setting, i.e. with a white beam.

A further field of single-crystal diffractometry is protein crystallography. The goal
with this experimental method is to solve the structure of the proteins making up
the repeating cell of the crystal rather than the repetition itself. As a consequence,
it is the envelope of the Bragg peaks that has to be sampled over large areas of
reciprocal space, which is invariably done with area detectors.

Finally, the study of elastic diffuse scattering, e.g. due to short-range order,
deserves mentioning. While this is in principle a problem of diffractometry, such
diffuse intensities are much lower than Bragg peaks and on the same order as
thermal diffuse scattering, which is what one calls inelastic scattering due to,
e.g., phonons when one does not have energy resolution. Thus, while compared to
Bragg peaks this thermal diffuse scattering contributes only to the background,
here one actually needs to perform energy analysis in order to extract the purely
elastic part. This is therefore done with spectroscopy set-ups.



B.2. NEUTRON-BASED EXPERIMENTAL TECHNIQUES 37

B.2.3 Small-angle scattering

Probing correlations at small Q and thereby large real-space scales is, according
to Eq. (B.2.1), the domain of small-angle scattering (SANS for small-angle neutron
scattering). Specifically, by using cold neutrons and sample-detector distances
up to a few tens of meters, Q from 1Å−1 to below 10−3 Å−1 can be achieved. At
continuous-beam instruments, tight incident collimation is necessary for achieving
acceptable resolutions, which leads to the lengths of such instruments being on
the order of 100m. On the other hand, the energy resolution is set to quite coarse
values of around 10% by helical velocity selectors in order to have high fluxes
at the sample. In contrast, with pulsed beam and the time-of-flight technique,
the resolution is effectively only dictated by the collimation. Scattered neutrons
are detected at area detectors with ideally isotropic resolutions. Different ranges
of probed Q are accessible by driving the detector along the direction of the
beam. This is done within an evacuated flight tube in order to avoid absorption
in air. Where the direct beam would hit the detector, an absorbing beam stop is
positioned, as the high intensities of the direct beam would harm the detector.

In conventional SANS as opposed to grazing-incidence SANS (see below), trans-
mission geometry is used. For systems with correlations in the small-angle regime,
the associated differential cross-section can become quite large. Thus, for avoiding
significant contributions due to multiple scattering, often sample thicknesses in
the mm range have to be used. This is in contrast to most other cases of neutron
scattering, where small-angle scattering events that can be resolved here vanish in
the forward direction. Often, soft matter samples with isotropic scattering signals
are investigated, allowing to reduce the detector read-outs to one-dimensional
diffractograms.10

B.2.4 Reflectometry

The properties of surfaces and thin films can be studied by reflectometry. Specif-
ically, the intensity of the specular reflection as a function of Q encodes the
variation of the scattering length density with depth, where the specular reflec-
tion corresponds to a symmetric path of the neutrons with respect to the surface
normal. Neutron reflectometers are normally set up so that the scattering plane
is vertical, which facilitates studies of liquid films. At continuous sources with
monochromatic beams, it is necessary to rock the sample to detect the reflection
curve, while for pulsed white beams the time-of-flight method allows to determine
it with fixed detector position and sample orientation. Here it is possible to incline
the incident beam with respect to the horizontal direction, allowing to study liquid
surfaces, which are horizontal due to gravity. Another main field of study is the
magnetism of thin films, done by polarized reflectometry.

If the samples are not homogeneous within the surface plane, off-specular inten-
sity occurs. This is then called grazing-incidence small-angle neutron scattering
(GISANS), where both the shapes as well as the correlations of particles on a sub-

10Note that somewhat inconsistently to the diffractometry/spectrometry distinction, here often the
data are also called “small-angle spectra.”
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strate, or more general inhomogeneous films are investigated. As in conventional
small-angle scattering, the intensity is detected by an area detector.

B.2.5 Triple-axis spectrometry

The purpose of a triple-axis spectrometer (TAS) is to study the intensity at a
given point in (Q,ω) space. Classically, it has been typically used to determine
phonon or magnon dispersion relations, but in more recent times weak excitations
beyond those fundamental ones have been increasingly studied. As it can measure
only one point at a time, its great flexibility and resolution is paid for by long
measurement times. In contrast, when larger regions of reciprocal space are of
interest (or when one wants to be sure not to miss anything outside of the high-
symmetry directions typically measured with TAS), time-of-flight spectrometers
are a better choice. Along the same reasoning, it is nearly always single crystals
which are measured at these instruments. Triple-axis spectrometers use either
thermal (for high count rates) or cold (for high resolution) neutrons. Specifically
for studying magnons with high ω at low Q also instruments at hot sources can
be the best choice.

A triple-axis spectrometer has crystal monochromators and analyzers both before
and after the sample. Therefore, it can detect energy transfers between the
neutrons and the sample. Further, the scattering angle can be varied, and the
sample can be rotated around the vertical axis. The three axes correspond to the
vertical axes through, first, the monochromator, around which monochromator
and the rest of the instrument is turned, second through the sample, around
which the sample itself and the analyzer and detector are turned, and third,
through the analyzer, around which the detector is turned. Of course, at the
monochromator and analyzer always θ/2θ-configurations are used, so that these
three axes correspond to four degrees of freedom. Further, along each of the four
straight sections of the flight path from source to detector there is a collimator.
The detector will typically be a vertical gas tube.

In effect, a TAS allows to freely set the incident wavevector relative to the crystal
lattice by the monochromator angle (length) and the sample rotation (orientation),
as well as the outgoing wavevector by the analyzer angle and the rotation of
the analyzer position with respect to the crystal lattice. Thereby, wavevector
transfer and energy transfer are decoupled. Indeed, it can be seen that in the
two-dimensional scattering plane incident and outgoing wavevectors correspond
to four degrees of freedom, while wavevector transfer and energy transfer only to
three. Therefore, there is one degree of freedom left. For reasons of more direct
correspondence between counting rates and fundamental properties, often this
is used to keep the length of the outgoing wavevector, that is, the energy at the
detector, fixed.

For studying dispersion relations, typically scans through the excitation in (Q,ω)
space are done. Here there are two main possibilities: The so-called constant-Q
scans are more typical, where a given wavevector transfer is set and the energy
is scanned. The result of such a scan is then the energy of the excitation at the
corresponding Q. The other main possibility is the constant-E scan, where for a
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constant energy transfer Q is varied. Which of those two is more advantageous is
determined by the slope of the dispersion at the point of interest: If the dispersion
is steep, a constant-E scan will show a sharp minimum, while a constant-Q scan
will show an ill-defined peak. At flat regions of the dispersion, the situation will
be reversed.

Setting the spectrometer to a given point in (Q,ω) space entails solving the
constituting equations for the four axes corresponding to the degrees of freedom.
Nowadays, this is done by a computer program. Also, it is advisable to do a
simulation of the necessary axes positions before each scan, in order to check
whether these are in principle possible (the values of the incident and outgoing
energies limit the wavevector transfer Q and vice versa) and practically possible
due to available floor space. Mechanically, the driving is effected by air pads on a
so-called “tanzboden”, that is, a granite floor polished to very high smoothness. If
pressurized air is released into the air pads, the massive arms of the spectrometer
can be moved by motors easily, and switching off the air once the positions are
reached makes them immobile.

The resolution function of a TAS quantifies the sampling density over (Q,ω)
space for a given nominal spectrometer setup. This means that if, for example,
monochromator and analyzer are set to accept a nominal energy difference ∆E,
also neutrons that experienced slightly different energy transfers at the sam-
ple would be counted with some probability. Now this resolution function over
four-dimensional space is quite complicated. In the typical approximation it is
assumed to be given by a multivariate Gaussian distribution, colloquially called
the resolution ellipsoid. Specifically, in general there will be some correlation
between the components of Q and ∆E. For optimally resolving the dispersions, it
is desirable to perform the experiments so that the long axis of the resolution axis
is parallel to the dispersion, which is called the focussing condition. This can imply
a choice between the energy-gain and energy-loss branches of the dispersion.

B.2.6 Time-of-flight spectrometry

In contrast to diffraction, where the assumed elastic nature of scattering leads to
the time of flight defining the energy of neutrons detected from a pulsed source
unambiguously, with inelastic scattering the energy transfer at the sample makes
it necessary to define the neutron energy either at the incoming or the outgoing
side. The corresponding time-of-flight spectrometers are said to be operating in
direct or inverted geometry, respectively.

Specifically, a time-of-flight spectrometer always starts with a pulsed white beam,
either intrinsically at a pulsed source or defined by a chopper at a continuous
source. In direct-geometry instruments, this white beam is then monochromatized
either by a monochromator or by a second chopper at some distance. In the
latter case typically also further choppers are used in order to suppress higher-
wavelength contaminations. At continuous sources, the monochromatization and
pulsing can be performed at the same time by using a rotating crystal chopper.
The pulsed white beam is then passed onto the sample, and the energy transfers
are detected by the time of flight to the detector over a distance of up to a few
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meters.

In inverted geometry, the white beam pulse is passed onto the sample over a
flight path that encodes the incoming neutron energy into the time when it hits
the sample. On the outgoing side the neutrons are then monochromatized to
a fixed energy, either by a crystal via Bragg scattering or via an energy filter,
and counted. Here early neutrons are those that arrived early at the sample,
therefore were fast on the incoming side and experienced a large energy loss to fit
into the energy window enforced on the outgoing side. This is in contrast to the
direct-geometry instruments, where early neutrons are those that experienced an
energy gain at the sample to make them fast on the outgoing side. A disadvantage
of inverted-geometry instruments compared to direct geometry is the higher flux
on the sample and therefore larger background and activation.

Specifically for the direct-geometry instruments, there are neither analyzers nor
collimators on the outgoing side between the sample and the detectors. Therefore
one can cover as much of the solid angle with detectors as funds allow, giving
high integral count rates. With a flight path of a few meters, already a simple
array of gas tubes has a good resolution of direction. With such an instrument,
the scattering signal resolved with respect to time of flight for a given sample
orientation gives a curved three-dimensional cut through four-dimensional (Q,ω)
space. Turning the sample allows to cover all four dimensions. Therefore, such
instruments are most suited when information over large regions of (Q,ω) space
is desired. Such data make impressive illustrations, but in their richness can
be hard to get an overview of. Further, the resolution varies non-trivially over
four-dimensional space.

B.2.7 Backscattering spectrometry

Diffusive motion leads to a broadening of the elastic line, the so-called quasi-
elastic scattering. In order to detect these effects, small energy transfers (below a
few meV) have to be resolved with a resolution on the order of a few µeV. This is
the domain of backscattering spectrometers. Their name comes from the fact that
due to Eq. (B.1.11) a crystal monochromator or analyzer gives the best resolution
under the condition of backscattering, that is, θ =π/2.

With backscattering spectrometers, the neutrons are reflected back from the
analyzers and have to pass very closely next to the sample or even through it on
their way to the detectors. Therefore, there is no geometric possibility to separate
the analyzed neutrons from those that are scattered from the sample directly into
the detectors. As a consequence, also on continuous sources a chopper is used to
discriminate those two cases by the time of flight.

For reasons of efficiency, a number of analyzer-detector pairs are arranged around
the sample, giving the quasi-elastic signal for different Q. These analyzers are
operated at constant energy, therefore the energy transfer has to be scanned
on the incident side. This can be done either by driving the backscattering
monochromator periodically back and forth and using the Doppler effect, by
heating the monochromator and thereby changing the lattice constant, or at
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pulsed sources by using the time-of-flight method with very long flight paths.

Due to the necessity of defining the energies with very high resolution, only a very
small part of the moderated neutron flux can be used. Therefore count rates at
such instruments are very low and the durations of experiments are long.

B.2.8 Spin-echo spectrometry

The spin-echo effect is a quite different way how energy transfers of neutrons
can be detected. To begin with, assume a neutron beam along the x direction
having some spectral width, into which a polarizer and analyzer, both set to
longitudinal polarization, are inserted. Let there be a homogeneous longitudinal
field. If now two π/2 spin rotators, the first from longitudinal x to transversal
z direction and the second back to x, separated by a macroscopic distance, are
inserted into the beam, the intensity will be decreased (essentially to half its
value), as the neutrons will have performed many cycles of Larmor precession
within the y-z-plane between the two spin rotators, so that their effective phase
exp(iφ), which depends sensitively on the velocity of the respective neutron, will be
undefined. However, when a π spin flipper with respect to the y component of the
spin is additionally inserted exactly between the two π/2 rotators, the full intensity
should ideally be recovered. This is because if a neutron of some velocity v should
acquire an angle φ(v) (up to multiples of 2π corresponding to full rotations), the
action of the π flipper is just to subtract this angle. This is true for any neutron
velocity v (provided the spin flipper and the rotator function independent of v).
This focussing, where the depolarized neutrons meet at the second rotator again
with equal polarizations, is called the spin-echo effect.

In a spin-echo spectrometer, the two precession paths are realized as coils, with a
low field region in between.11 The sample is placed there, next to the π flipper, and
the outgoing arm is rotated with respect to the incoming arm to some scattering
angle 2θ. If a given neutron is scattered elastically, it will fulfill the spin-echo
condition and be counted. On the other hand, if it experiences some small energy
transfer in the quasi-elastic at the sample, the flight time through the second coil
will be affected, leading to a depolarization and decreased counting probability.
Note that, different from the presentation above, experimentally it need not be
guaranteed that the two flight paths have the same length, it suffices if the product
of field and length is equal.

The total accumulated phase along a path of length l and field B according to
Eq. (B.1.16) is

φ= γN
Bl
v

, (B.2.3)

and for two arms with a π flipper in between it is

∆φ= γNBl(
1
v1

− 1
v2

)≈ γNBl
∆v
v2 (B.2.4)

11The more obvious solution, where opposite field polarizations instead of a π flipper give rise to the
spin-echo effect, is not practicable, as the necessary field-free region between the coils would lead to a
degeneracy of neutron spin states there.
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if ∆v = v2 −v1 and |∆v|¿ v. On the other hand, the energy transfer is given by

ħω= mN

2
(v2

2 −v2
1)≈ mNv∆v, (B.2.5)

therefore

∆φ= γNBlħω
mNv3 . (B.2.6)

Defining the spin-echo time as

t = ∆φ
ω

(B.2.7)

shows that setting the instrument to a certain value of Bl at some mean neutron
velocity v corresponds to measuring the intensity for a spin-echo time

t = γNħBl
mNv3 . (B.2.8)

With increasing t, depolarization becomes more severe, and therefore intensity
decays. The scale of this decay in t can therefore be interpreted as the timescale
of the fluctuations giving rise to the quasi-elastic broadening.

Due to the spin-echo effect, the resolution of such a spectrometer is (in first order)
independent of the used wavelength spectrum. As a consequence, it can be used
to probe timescales (or energy transfers) that cannot practically be reached by
backscattering spectrometers. With typical values of Bl below one Tm and using
cold neutrons, spin-echo times on the order of a few tens of ns can be reached
at relative wavelength spreads on the order of 10%. Of course, such coarse
monochromatization also limits the Q resolution.

Above values correspond to the neutrons performing a few tens of thousands of
cycles in incoming and outgoing precession coils. Therefore, for the spin-echo effect
to work, the fields have to be stable and homogeneous to better than 10−5. This
constitutes the main challenge in building and operating a spin-echo spectrometer.

B.2.9 Incoherent spectrometry

Different from the cases treated above, where the energy transfer is always
considered for a given wavevector transfer Q, specifically for the case of incoherent
scattering the signal does not depend on Q. In this case it is obviously desirable to
cover as large a solid angle as possible. The so-called beryllium filter spectrometers
give a simple solution to this problem. In principle, these spectrometers are
analogous to triple-axis spectrometers where the energy analysis is performed by
a beam filter, prototypically a polycrystalline beryllium or beryllium oxide block.
As discussed in B.1.3.5, these filters have a fixed window of transmission below
their cutoff wavelength, which is independent of the direction the neutrons pass
through. Thus, the detector can be very close to the sample and cover a large part
of the solid angle.

Scanning the incident energy gives the inelastic spectrum on the energy-loss side.
For instance, it can be used for studying the vibrational spectra of hydrogen in
molecules, which, due to the cross sections of 1H, is nearly purely incoherent.
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B.2.10 Neutron radiography

In contrast to the scattering methods, which give information resolved in reciprocal
space, radiography studies the spatial structure of samples in real space. In the
most simple case, it consists in measuring the transmitted intensity as the beam
is scanned over the sample. Using a spatially resolved detector with a collimated
wide beam is more efficient. Another option is to use a divergent beam with the
pinhole camera principle, giving an enlarged image at the detector and therefore
an increase in spatial resolution. Values on the order of 100µm are typical.

The advantages of neutron radiography over X-ray radiography include the higher
penetration of neutron as well as the ability to resolve also light elements. As
in the X-ray case, by acquiring a series of transmission images as the sample
is rotated through the beam, the three-dimensional absorbtion density can be
reconstructed from the transmission images, which correspond to projections of
the three-dimensional density, by tomographic techniques.

There are other possibilities besides the absorption contrast: For instance, a Talbot-
Lau interferometer consists of two absorption gratings on either side of a phase
grating. The phase grating leads to periodic diffraction maxima under small angles.
Depending on the configuration of the two absorption gratings with respect to each
other, these maxima either pass through the gaps, giving high intensity, or are
blocked by the second absorption grating, giving low intensity. When a sample that
produces small-angle scattering is inserted into this interferometer, the additional
scattering smears the interference effects. Thus, images of inhomogeneities that
give scattering on the corresponding order of magnitude can be obtained. This
technique is analogous to dark-field imaging in transmission electron microscopy.

B.2.11 Activation analysis

Neutrons can also be used to determine the composition of samples. There are two
options: On the one hand, in neutron activation analysis the sample is irradiated
by neutrons, for instance by placing it into the reactor pool, and afterwards the
emitted γ radiation spectrum is measured. As each radioactive decay has specific
transition energies, the peaks in the energy spectrum can be assigned to those
transitions and correspondingly to the isotopes the initially corresponded to. With
this technique, only isotopes that have not too small absorption cross sections as
well as that become radioactive with practicable lifetimes can be detected.

The latter restriction is lifted by prompt gamma activation analysis: Here the
prompt γ spectrum is acquired, that is, the emitted photon energies as the sample
is in the beam. Here it is not (only) the radioactive transition energies that are
sampled, but the energies corresponding to the capture of neutrons by the nuclei.

The unique property of these methods is their ability to detect trace elements or
the isotopic make-up of samples non-destructively. For instance, this can be used
to match archeological artifacts to ore deposits. In contrast, if it is the chemical
composition that is required, and if at least small parts of the sample can be
sacrificed, other methods can give results with better precision and accuracy.
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Chapter C

Theoretical descriptions of
scattering

C.1 Theories of weak elastic scattering

According to the de Broglie hypothesis, also massive particles behave in some
aspects, specifically those that are relevant for the interaction with matter at
low energies, as if they had a wave nature. Thus, moderated neutrons display
non-trivial scattering phenomena. While the actual microscopic theories differ,
the most fundamental principles are common to all kinds of scattering, be it of
massive particles or electromagnetic waves. As a motivation for the detailed
theory of neutron scattering to be derived below, these principles will be presented
here, specifically the scattering of scalar waves from static potentials.

C.1.1 Huygens-Young-Fresnel theory

Towards the end of the 17th century, the nature of light was a prominent question.
On the one hand, specifically Isaac Newton, motivated by his studies of the
separation of white light into colours, propagated a particle view. On the other
hand, it was known that rays of light are refracted at boundaries between different
media according to Snell’s law, which was understood as a special case of Fermat’s
principle, stating that any observed path of rays correspond to local extrema of
the time taken.

To put Fermat’s principle on a more fundamental basis, and specifically to explain
the phenomenon of birefringence, Christiaan Huygens (1690) proposed that the
propagation of light has a wave-like and thus transversally extended nature, in
marked contrast to the geometric paths inherent to corpuscular theories. In his
hypothesis, a point source of light initially emits a circular wave. Each point on
the crest of this wave then emits secondary circular wavelets, and the new wave
surface is constituted by the envelope of these wavelets. Iterating this process
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with infinitesimal step sizes yields the observed geometric behaviour of rays of
lights.

The main deficiencies of this theory lie first in the additional requirement that
the wavelets contribute only where they touch the envelope and not radiate in
other directions, and second that only the forward envelope is allowed. This
was solved by Augustin Fresnel (1818), who abandoned the idea of propagating
pulses corresponding to the secondary wavelets in the original theory in favour of
temporally continuously varying wave trains, with the resulting wave given by
interference, another new effect which had been demonstrated by Thomas Young
(1802). This theory predicts also non-rectilinear propagation phenomena near
edges, which subsequently were experimentally verified.

The validity of this theory for both electromagnetic radiation and massive particles
such as neutrons in the quantum-mechanical regime follows from the assumed
spherical wavelets (and also plane waves) being solutions both to the Maxwell
equations as well as the Schrödinger equation in vacuum.

C.1.2 A fixed point scatterer in an incident plane wave

As motivated above, given appropriate initial and boundary conditions radiation
(from now on understood to include both electromagnetic waves as well as massive
particles at the relevant energies) will propagate in vacuum as plane waves

ψ(r, t)= ei(kir−ωt), (C.1.1)

with ω/|ki| =ω/k = v being the phase velocity.

Consider now the spatial homogeneity of the vacuum being broken by a static
disturbance that is confined to a region around the origin (|r| < R). For |r| > R, the
relevant wave equation of course still has to be fulfilled, but the solution will be
modified with respect to the incident plane wave, with the difference being termed
the scattered wave ψs. Due to the linearity of the wave equation, also ψs alone
has to be a solution.

The disturbance is assumed to be static, so any explicit time dependence e−iωt can
be factored out of the expression, which shows that also the spatial periodicity of
the scattered wave has to be given locally by k. If now Rsk ¿ 1, the scattering
process is not sensitive to any internal structure of the disturbing potential. Thus,
with the coupling between ψi and ψs being only through the potential that can be
treated as a point-like disturbance at the origin, the scattered wave ψs has to be
spherically symmetric around the origin, with a temporal amplitude given by the
effect of ψi at r= 0. Thus

ψs(r, t)=−b
eik|r|

|r| ψi(0, t)=−b
eikr

r
e−iωt (C.1.2)

is a spherical outgoing wave, with the proportionality constant b called the scatter-
ing length. This spherically symmetric scattering is also called s-wave scattering,
and is always adequate for the scattering of thermal neutrons from nuclei.
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Now both for electromagnetic radiation and massive particles the scattered in-
tensity is the absolute square of the scattering amplitude (in the latter case it
corresponds to the spatial probability density of the particles). Thus, it is given by

I(r)= b2 1
r2 . (C.1.3)

This decay of intensity with squared distance from the scattering center is con-
sistent with conservation of energy or particle number, respectively, as the area
of the enclosing sphere grows accordingly. Obviously, the total scattering cross
section is given by

σtot = 4πb2. (C.1.4)

C.1.3 Extended scatterers and the Born approximation

The more interesting case is when the condition Rk ¿ 1 is not fulfilled, so that the
actual spatial structure of the disturbance, which in the above case was hidden
in the scalar parameter b, has to be explicitly considered. In a first instance,
consider an arrangement of point-like scatterers at positions ri with respective
scattering lengths bi. Conceptually, the task of solving the relevant wave equation
can be approached by assuming an incoming plane wave that hits the distinct
scatterers, which in turn send out circular waves. Then, these waves emanating
from scatterer i will reach scatterer j, leading to secondary scattered waves, and
so on. If the scattering is weak, this procedure can be expected to converge. The
formal method corresponding to this sketched approach is called the Born series.
Typically, this series is truncated after the first term, that is, it is assumed that
each scatterer feels only the unperturbed incident wave. This is also called the
Born approximation.

In the particle view of scattering, the regime of validity of the Born approximation
can be easily understood. Specifically, it corresponds to the probability of any
scattered particle to be scattered a second time instead of leaving the scattering
volume, or equivalently of any incident particle being scattered at all instead
of passing through the scattering volume unperturbed, being very small. As in
the neutron case the scattering cross sections of the distinct scatterers are given
by 4πb2

i according to Eq. (A.2.7), this is the case if the summed scattering cross
section of the ensemble of scatterers 4π

∑
i b2

i is much smaller than the cross
section of the volume over which they are distributed.

If the Born approximation is valid, there is a simple expression for the scattering
from a static sample in the far field. Specifically, by summing up the contributions
from all scatterers, the scattering field results as

ψs(r, t)=−∑
j

b j
eik|r−r j |

|r−r j|
ψi(r j, t)=−e−iωt ∑

j
b j

ei(k|r−r j |+kir j)

|r−r j|
. (C.1.5)

Defining now the outgoing wavevector as

kf = k
r
|r| , (C.1.6)
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for |r|À R we have

k|r−ri| ≈kf(r−ri) (C.1.7)

and thus

ψs(r, t)=−ei(kfr−ωt)

|r|
∑

j
b jeiQr j , (C.1.8)

where the wavevector transfer is defined as

Q=ki −kf. (C.1.9)

This relation between incident and outgoing wavevectors on the one hand and
wavevector transfer on the other hand is called the scattering triangle. Due to the
law of cosines we have

|Q|2 = |kf|2 +|ki|2 −2|ki||kf|cos(2θ), (C.1.10)

where the angle between ki and kf is called the scattering angle 2θ. For the case
of elastic scattering as relevant here this reduces to

|Q| = 2ksin(2θ/2). (C.1.11)

Of course, for a general scattering length density distribution ρ(r) the above
expression can be generalized to

ψs(r, t)=−ei(kfr−ωt)

|r|
∫

dr′ρ(r′)eiQr′ , (C.1.12)

This shows that in the limit of weak interaction and a static sample, the scattered
field is essentially proportional to the Fourier transform of the scattering length
density in the sample. This theory is also called the theory of kinematical scatter-
ing or diffraction, to be contrasted with the dynamical theory of diffraction to be
treated below, where multiple scattering effects are explicitly included.

C.1.4 Kinematical diffraction from perfect crystals

We now consider kinematical diffraction from static crystals. A crystal is defined
as a periodic arrangement of scatterers, and for simplicity we will assume here
point-like scatterers as is appropriate for the scattering of neutrons from non-
magnetic samples. The periodic arrangement is realized as a tiling of identical
unit cells, which are placed at positions

rn = n1a1 +n2a2 +n3a3, (C.1.13)

where n is the coordinate vector with respect to the basis spanned by the lattice
vectors ai. In the simple cases with just one atom per unit cell, this atom can be
assumed to be situated at these lattice position, while in the more complicated
cases there are Λ sites per unit cell at positions rλ relative to the lattice positions,
populated by atoms with respective scattering lengths bλ.
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Inserting this spatial arrangement into Eq. (C.1.8) and dropping the prefactor
corresponding to the expanding scattered wave gives

ψs ∝
∑
n

∑
λ

bλeiQrn eiQrλ =∑
n

eiQrn
∑
λ

bλeiQrλ . (C.1.14)

For non-zero scattering, obviously both sums have to be different from zero. The
lattice sum

∑
n eiQrn runs over a finite, but very large number of cells N. If now Q

is chosen such that Qrn is some integer multiple of 2π for all n, this first sum is
equal to N. In the converse case, there will be destructive interferences to a large
degree, as the values of eiQrn will be distributed with practically uniform density
over the complex unit circle. Thus, the first factor leads to the elastic scattering
from a perfect crystal being concentrated in sharp peaks with a width on the order
of the inverse of the crystal dimensions. These peaks are called Bragg peaks.

The condition that there exists an integer m such that Qrn = 2πm for all n can be
taken as the definition of the reciprocal lattice. Specifically, defining

g1 = 2π
a2 ×a3

a1 · (a2 ×a3)
(C.1.15)

with g2 and g3 defined by cyclic permutation of indices, the vectors

Gn = n1g1 +n2g2 +n3g3 (C.1.16)

again with integer coordinate vectors n are exactly those vectors that fulfill
Gn′rn = 2πm for all n and n′. They are called reciprocal lattice vectors and are
the only positions in reciprocal space where a perfect crystal scatters elastically.
The corresponding condition Q=Gn for some n is called the Laue condition.

The other factor in Eq. (C.1.14) is called the structure factor

S =∑
λ

bλeiQrλ . (C.1.17)

Apart from other factors to be treated below, it determines the scattering intensity
of the Bragg peaks. For primitive lattices with just one atom per unit cell, it is
just the scattering length1 and thus constant with Q, while for non-primitive
structures it shows a characteristic variation over the different Bragg peaks given
by the positions of the sites within the unit cells and their respective average
scattering lengths. Differences in the chemical make-up of inequivalent sites are
known as long-range order.

When the requirement of the crystal being made up of point scatterers is relaxed,
the scattering lengths bλ depend on Q. For X-ray scattering, the corresponding
expression is called the atomic form factor and essentially is the Fourier transform
of the electronic distributions within the atoms, which directly follows from Eq.
(C.1.12). On the other hand, nuclei are much smaller then the relevant neutron
wavelengths, so for nuclear neutron scattering the scattering lengths show no
dependence on Q. However, magnetic moments of the atoms couple to the neutrons’

1Actually, the phase of the structure factor depends on the choice of origin. Experimentally, only its
absolute value is accessible, therefore it can always be chosen real and non-negative.
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magnetic moments, so in this case also in neutron scattering atomic form factors
and thus Q-dependent scattering lengths appear, which now follow from the
spatial distributions of the unpaired electrons. Further, the effect of atomic
oscillations on the elastic scattering can also be understood as a broadening of the
spatial distributions, with a concomitant decay of the scattering length with Q.
This so-called Debye-Waller factor will be treated in more detail below. Finally,
the scattering lengths can also depend on the frequency of the radiation, showing
resonant behaviour, specifically with respect to electronic transitions in the case
of X-rays and nuclear transitions in the case of neutrons. These give the so-called
dispersion corrections, which however are negligible for most nuclei in the case of
thermal neutron scattering.

C.1.5 Scattering with uncorrelated scattering length ran-
domness

To bring out an aspect of the effect of randomness in the scattering lengths, we
write b j in Eq. (C.1.8) as

b j = 〈b j〉+∆b j, (C.1.18)

with ∆b j understood as uncorrelated random variables with zero mean, that is,

〈∆b j〉 = 0 ∀ j (C.1.19)

and

〈∆b j∆bk〉 = 〈∆b j〉〈∆bk〉 = 0 ∀ j 6= k. (C.1.20)

The expected value for the intensity is then

I(Q)= ∣∣ψs(Q)
∣∣2

∝∑
j,k

〈
b jbk

〉
eiQ(r j−rk)

= ∑
j 6=k

〈
b jbk

〉
eiQ(r j−rk) + ∑

j=k

〈
b jbk

〉
eiQ(r j−rk)

= ∑
j 6=k

〈
b j

〉〈
bk

〉
eiQ(r j−rk) +∑

j

(〈
b jb j

〉+〈
b j

〉〈
b j

〉−〈
b j

〉〈
b j

〉)
=∑

j,k

〈
b j

〉〈
bk

〉
eiQ(r j−rk) +∑

j

(〈
b2

j
〉−〈

b j
〉2

)
=∑

j,k

〈
b j

〉〈
bk

〉
eiQ(r j−rk) +∑

j

〈
∆b2

j
〉
.

(C.1.21)

This shows that uncorrelated randomness in the scattering lengths gives only a
flat (i.e., independent of Q) background to the scattered signal, while any variation
with Q is only due to the mean values of the scattering lengths.

For X-rays, this derivation is not relevant: X-rays scatter from the atomic elec-
trons, therefore any variation in the atomic scattering lengths directly entails
different chemical behaviour. As the corresponding energies are on the same
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order as temperature, there is no true randomness. On the other hand, in the
case of neutrons this leads to the phenomenon of so-called incoherent scattering
as mentioned in A.2.2. However, as is obvious from the derivation given here,
it would be wrong to assume that the incoherent contribution is due to some
scattering process that is not affected by interference. The point is rather that
this contribution would be sensitive to correlations that do not correspond to
appreciable energy differences, specifically differences only in isotopes or nuclear
spin orientation, therefore all these interference effects are washed out in the
statistical averaging.

To be specific, with the definitions of the coherent scattering length and the
incoherent scattering cross sections as given in A.2.2 the scattered intensity
(C.1.21) reads

I(Q)∝∑
j,k

b j
cohbk

coheiQ(r j−rk) + 1
4π

∑
j
σ

j
incoh. (C.1.22)

C.1.6 Scattering and pair correlations

Diffuse scattering is the term applied to everything in the scattering signal distinct
from the Bragg peaks. Apart from inelastic scattering (to be discussed below),
incoherent neutron scattering as treated above is an example, which however in
the elastic case does not convey any information on the sample and is thus often an
undesirable contamination of the signal. This is in contrast to diffuse scattering
due to chemical disorder, where the characteristic variation over reciprocal space
encodes correlations between the elements that occupy nearby lattice sites and
possible small deviations from the ideal positions.

Specifically, according to Eq. (C.1.12) the scattering amplitude is the Fourier
transformation of the scattering length density

ψs(Q)∝
∫

dr′ρ(r′)eiQr′ . (C.1.23)

The scattered intensity is the absolute square of the amplitude, thus

I(Q)∝
Ï

dr1dr2ρ(r1)ρ(r2)eiQ(r1−r2) =
Ï

drd∆rρ(r)ρ(r−∆r)eiQ∆r (C.1.24)

assuming for simplicity real scattering length densities and substituting r1 = r
and r2 = r−∆r. This shows that the elastic scattered intensity is equal to the
Fourier transform of a (static) pair-distribution function

g(∆r)=
∫

drρ(r)ρ(r−∆r). (C.1.25)

This expression allows to rederive the earlier results: for a perfect lattice (assume
for simplicity a Bravais lattice) populated by scatterers with equal scattering
lengths, ρ(r) is just a sum of regularly arranged δ distributions

ρ(r)= b
∑
n
δ(r−rn). (C.1.26)
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Of course, then also g(∆r) has such a form

g(∆r)= Nb2 ∑
n
δ(r−rn), (C.1.27)

and the scattered intensity being the Fourier transformation of g(∆r) is again
a sum of δ distributions, but now being arranged on the sites of the reciprocal
lattice, corresponding to the sharp Bragg peaks.

For the case of uncorrelated random deviations in the scattering lengths from the
mean value 〈b〉, the static pair-distribution function is modified by an additional
contribution at the origin, while due to the absent correlations the off-origin
deviations average out

g(∆r)= N
(
〈b〉2 ∑

n
δ(r−rn)+ (〈b2〉−〈b〉2)

δ(r)
)
. (C.1.28)

Of course, the Fourier transformation of a δ distribution at the origin gives
a contribution that is constant over all of reciprocal space, corresponding to
incoherent scattering.

However, if the deviations of the scattering lengths are correlated over short dis-
tances, such as in the case of an alloy due to chemical interactions, the prefactors
of the respective δ distributions in g(∆r) are not constant any more. Thus, the
diffuse scattered intensity is modulated, where the amplitudes of the distinct
modulations directly give the prefactors of the peaks in g(∆r) and thus of the
correlations in the occupations. Qualitatively, here a clustering tendency between
equal elements leads to increased values in g(∆r) for small ∆r, and thus to to
increased intensity at small Q. Note that this is consistent with the small-angle
scattering that would result when a stronger clustering tendency leads to an
actual phase separation. Conversely, a preference for pairs of unequal atoms will
give increased intensity between the Bragg spots, which in the extreme case of
long-range order will evolve to superstructure peaks.

Another possibility is the case of a binary ideal solid solution (where the occupa-
tions of the lattice sites by the two kinds of atoms are random and uncorrelated),
but where chemical interactions lead to static deviations from the ideal lattice
sites. In this case, g(∆r) ceases to consists of a regular lattice of δ distributions. In
a first approximation for small displacements the additional contributions can be
assumed as dipoles at the lattice sites, which can still be treated with analytical
expressions, giving intensities that increase with Q.

For a liquid or amorphous system, the pair correlation function g(∆r) is the
principal experimentally observable quantity with respect to the short-range
atomic arrangement. Note that in this case it only depends the absolute value of
∆r.

C.2 Beyond kinematical scattering

In the field of elastic scattering, there are two relevant aspects where kinematical
scattering theory is inadequate, that is, where the amplitude of the scattered
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wave becomes significant compared to the incident wave. Specifically, these
are the phenomena of refraction and reflection of plane waves, which assume
homogeneous media separated by laterally homogeneous interfaces and are the
direct analoga of the respective phenomena in optics, and dynamical diffraction
from perfect single crystals, where the discrete spatial structure is fundamental.

C.2.1 Propagation through matter

For deriving how an incident plane wave is modified when it enters a medium, we
first treat the kinematical scattering from a thin homogeneous slab of material.

Assume an incident plane wave ψ with wavevector k= (0,0,k) falling onto a slab
of material oriented perpendicular to the z direction with thickness ∆, situated at
z ∈ [−∆/2,∆/2]. Assume that ∆k ¿ 1, then an infinitesimal piece of the material
situated at (x, y) will emit spherical waves with an amplitude −bρ∆dxdy, where
ρ is the number density of scatterers, each having scattering length b. In polar
coordinates this reads −bρ∆rdrdφ, thus the contribution of all these elements to
the scattered field at position x0 = (0,0, z) is

ψs(x0)=
∫ 2π

0
dφ

∫ ∞

0
drr(−bρ∆)

eikR

R
=−2πbρ∆

∫ ∞

0
dr

r
R

eikR , (C.2.1)

with R =
p

r2 +k2. Using

dR
dr

= r
R

, (C.2.2)

substitution gives

ψs(x0)=−2πbρ∆
∫ ∞

z
dReikR . (C.2.3)

Of course, the anti-derivative does not converge for an upper limit of R = ∞.
However, for a finite slab of material with a density that goes smoothly to zero at
the outside, the corresponding contribution averages out, giving

ψs(x0)=−2πibρ∆
k

. (C.2.4)

Clearly, an analogous result also holds for all other points (x, y,∆). Thus, also the
scattered field would propagate as a plane wave in the vacuum with wavevector k.
Combining incident and scattered wave to an outgoing wave, we see that

ψo =ψ+ψs =ψ
(
1− 2πibρ∆

k
)=ψe−i(2πbρ∆/k) (C.2.5)

after the passage of a slab of thickness ∆, where the last equality is in the limit
of small ∆. Stacking now such slabs on top of each other, we see that the wave
inside the medium is given by

ψ′(x, y, z)=ψ(x, y, z)e−i2πbρz/k = eikze−i2πbρz/k = eik′z (C.2.6)
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with k′ = k−2πbρ/k = k(1−2πbρ/k2).

Defining the index of refraction

n = 1− 2πbρ
k2 = 1− bρλ2

2π
, (C.2.7)

we get

k′ = nk. (C.2.8)

Note that in this derivation, the scattered field was assumed to propagate unper-
turbed from the point of scattering to x0. Thus, the derived expression for n is only
valid in the limit |n−1|¿ 1, that is, for weak interactions. An exact expression for
the case of neutron scattering can be derived by considering the energetics of the
process: As will be shown below, the nuclear scattering length can be connected to
the potential felt by the neutrons via the Fermi pseudo-potential

VF(r)= 2πħ2

mn
bδ(r). (C.2.9)

For forward scattering, as is relevant here, the spatial structure is irrelevant,
so these pseudo-potentials at the positions of the nuclei can be replaced by a
homogeneous average potential inside the medium

V (r)= 2πħ2

mn
bρ. (C.2.10)

With the kinetic energy of the neutron

E = ħ2k2

2mn
, (C.2.11)

conservation of energy leads to

k2 = k′2 +4πbρ. (C.2.12)

Thus, requiring (C.2.8) gives

n =
√

1− 4πbρ
k2 , (C.2.13)

to which (C.2.7) is equal up to first order in |n−1|.
According to our first derivation, the reason for the change in wavevector when
entering a medium is due to the scattered field having a phase of ±π/2 with respect
to the incident wave, which either accelerates or retards the revolution of the
phase with position, but leaves the absolute value of the amplitude unchanged.
Conversely, a change in the absolute value due to absorption is consequently
described by the imaginary part of the scattering length. Specifically, for a phase
shift of π with respect to the incident wave this contribution has to be equal to
−iβ with β> 0, giving

n = 1− 2πbρ
k2 + i

2πβρ
k2 . (C.2.14)
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Thus, the intensity of the transmitted beam decays with depth according to

|ψ′(z)|2 = |eik′z|2 = e−µz (C.2.15)

with the attenuation coefficient

µ= 4πβρ
k

. (C.2.16)

As we have on the other hand

µ= ρσabs (C.2.17)

we see

σabs =
4πβ

k
, (C.2.18)

which proves the 1/v law of neutron absorption (A.2.15), using v =ħk/mn for freely
propagating neutrons.2

The phase velocity of a plane wave is given by c =ω/k. In the absence of dynamics,
ω is constant (and indeed the periodic dependence on time has been factored out
in above derivation), therefore we see that the phase velocity changes as

c′ = c/n (C.2.19)

and thus is larger inside a medium with repulsive potential (n < 1) than outside.
This result seems counter-intuitive and shows that the phase velocity is different
from the velocity that is responsible for transport of matter (the group velocity),
the latter of which being relevant for the most part here.

C.2.2 Refraction

When a ray passes non-perpendicularly from one medium to the next, it changes
its direction of propagation. This phenomenon is termed refraction. Here we
assume without loss of generality an interface oriented perpendicular to the
z-direction and a wavevector of the incident radiation of k= (kx,0,kz).

The interface between the two media breaks translation invariance in z-direction
but not perpendicular to it. Thus, the in-plane periodicity of the incident wave is
retained also in the medium

k′
x = kx and k′

y = ky = 0. (C.2.20)

Together with (C.2.12), this implies

k2
z = k′2

z +4πbρ. (C.2.21)

For kz < kc
z = 2

√
πbρ, k′

z becomes purely imaginary. Thus, the wavefunction
decays exponentially into the medium with a penetration depth on the order of a

2As stated earlier, this is of course only valid away from resonances, that is, for b independent of k,
which is assumed everywhere in this chapter.
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few hundred Ångström and no true refracted ray forms. Instead, due to intensity
conservation the incident wave has to be totally reflected. Of course, the analogon
of (C.2.20) holds also here, leading to so-called specular reflection, that is, an
exiting ray that lies in the plane of incident ray and the surface normal and has
an equal angle to the surface normal as the incident ray.

However, also in the case of k2
z > 4πbρ there exists a specularly reflected wave

in addition to the refracted wave. Specifically, continuity (in zeroth and first
derivative) at the interface requires

α+α′′ =α′ and αkz −α′′kz =α′k′
z, (C.2.22)

where α, α′ and α′′ are the amplitudes of, respectively, the incident, refracted, and
reflected waves.

Solving this for α′′ and α′ gives the amplitude reflectivities and transmittivities

r = α′′

α
= kz −k′

z
kz +k′

z
(C.2.23)

and

t = α′

α
= 2kz

kz +k′
z
. (C.2.24)

The probability for reflection is the ratio of the squared amplitudes of incident
and reflected waves

R = |r|2 =
∣∣∣∣ kz −

√
k2

z − (kc
z)2

kz +
√

k2
z − (kc

z)2

∣∣∣∣2 = ∣∣∣∣1−
√

1− (kc
z/kz)2

1+
√

1− (kc
z/kz)2

∣∣∣∣2, (C.2.25)

which for kz À kc
z can be expanded to

R ≈ (πbρ)2

k4
z

. (C.2.26)

Of course, the intensity transmittivity (which for particle waves is the probability
for the particle to enter the medium) has to fulfill

T = 1−R, (C.2.27)

implying that

T = t2 k′
z

kz
. (C.2.28)

Using again (C.2.12) and (C.2.13) gives

k′2
z +k2

x = n2(k2
z +k2

x). (C.2.29)

Taking the square root and multiplying by kx/
√

(k2
z +k2

x)(k′2
z +k2

x) leads to Snell’s
law

sinθ = nsinθ′ (C.2.30)

with θ and θ′ being the angles of incidence and refraction, respectively.
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C.2.3 Reflectivity of a slab

In the derivation given above, the effect of a single interface between two media
was considered. For the geometry of a slab, which consists of a medium bounded
by two parallel planes, specifically the interference between the waves reflected
at the two interfaces gives rise to a characteristic variation of reflectivity and
transmittivity.

Let rout and rin be the amplitude reflectivities at the interface for a wave that
arrives from the outside or the inside of the slab, respectively, and analogously
tout and tin the corresponding amplitude transmittivities, given by (C.2.23) and
(C.2.24). We assume the slab to be bounded by vacuum on either side, thus these
quantities are the same for both interfaces. Let ∆ be the thickness of the slab.

The amplitude reflectivities and transmittivities are conditions that relate the
amplitudes of the three waves (incident, reflected and transmitted) at an interface
so that the wave equation is fulfilled. As the wave equation is linear, any general
situation with four waves (two on either side of the interface) can be written
as the suitable superposition of the three-wave solutions. Thus, the amplitude
reflectivities and transmittivities of a slab can be calculated as follows:

• Consider an incident wave of amplitude equal to unity at the upper interface.
With a reflected wave of amplitude rout and a wave with amplitude tout that
is transmitted into the medium, the wave equation is fulfilled at the upper
interface.

• However, the wave inside the slab is now the incident wave on the lower
interface. At this position, it has an amplitude of ptout where p = eik′

z∆ is
the acquired phase. Setting an amplitude for the outgoing wave into the
vacuum of ptouttin and an amplitude of ptoutrin for the wave reflected back
into the medium satisfies now the wave equation at the lower interface.

• With the back-reflected wave, now again the continuity conditions at the
upper interface have to be recovered, giving an additional contribution of
p2toutrintin to the upper outgoing wave and p2toutr2

in downwards-propagating
wave inside the slab.

• Now again the lower interface has to be considered. . .

This construction leads to an infinite series, which is absolutely convergent as
|prin| < 1.

The corresponding amplitude reflectivities and transmittivities of the slab are

rslab = rout + rintouttin p2 1
1− r2

in p2
= rout(1− p2)

1− r2
out p2

(C.2.31)

and

tslab = e−ikz∆
ptouttin

1− r2
out p2

, (C.2.32)
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where for the simplification of rslab the identities

rin =−rout (C.2.33)

and

r2
out + tintout = 1 (C.2.34)

due to (C.2.23) and (C.2.24) were used, and the factor e−ikz∆ in the expression for
tslab is due to the acquired phase of the reference incident wave.

Specifically for not too small kz, that is, away from the regime of total reflection,
rout is small and k′

z ≈ kz. Thus, according to (C.2.31) rslab shows periodic oscil-
lations as a function of kz, which are called Kiessig fringes. They are due to the
interference of waves reflected from the two interfaces, where multiple reflections
can be neglected. Note that the intensity is zero when the optical path length
difference is a multiple of the wavelength in the medium, as rout = −rin. For
kz & kc

z, the wavelength inside the medium begins to be significantly deviate from
the wavelength outside, thus the zeros of the reflectivity start to deviate from the
kinematical expression, where they are perfectly periodic in kz.

C.2.4 Reflectivity of a multilayer structure

Given the expressions for amplitude reflectivity and transmittivity of a homo-
geneous slab, the corresponding expressions for multilayer structures can be
calculated quite easily.

Consider first a bilayer structure with layer thicknesses ∆i and slab reflectivities
and transmittivities r′i and t′i, respectively, with i = 0 for the bottom layer. For
simplicity of notation we define t′′i = t′ie

ikz∆. Apart from direct reflection from the
top layer, the wave can also be transmitted through it, bounce any number of
times between the two layers and finally be transmitted back through the top
layer to contribute to the total reflectivity of the bilayer. Thus, the amplitude
reflectivity is given by

r1 = r′1 + t′′1r′0t′′1 + t′′1r′0r′1r′0t′′1 +·· · = r′1 +
t′′21 r′0

1− r′1r′0
= r′1 + r′0(t′′21 − r′21 )

1− r′1r′0
. (C.2.35)

Note that the lower layer only enters via its amplitude reflectivity as opposed
to its thickness or other parameters of the internal structure. Thus, the above
expression can also be used iteratively to calculate rn, the reflectivity of an n+1
layer system, given the reflectivity of the n layer system rn−1 and the reflectivity,
transmittivity and thickness of the added top layer.

Reflectivity studies are the main experimental method to investigate properties of
multilayers, thus these calculations are very relevant. While transmittivities are
studied less frequently, they can be computed by an analogous approach. Here
one would start at the top layer and compute both rn and tn given rn−1 and tn−1
and the properties of layer n.

Up to here, only perfectly flat and sharp interfaces were considered, which of
course is not representative of actual interfaces. The first sophistication of the
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model is to tread graded interfaces, with a gradual transition of the refractive
index. This can be treated as the limiting case of a multilayer with a large
number of thin layers of continuously varying properties. As a consequence, due
to destructive interference between the large number of interfaces, the interface
reflectivity decreases for large kz. Of course, towards kc

z the reflectivity is not
affected, as in this regime the total reflectivity is due to the impossibility to sustain
a travelling wave in the medium, regardless of the interface.

In a next step, interface roughness can be considered. This means that the local
interface height z(x, y) varies laterally with x and y and is modelled as a random
variable. In the absence of lateral correlations, that is for 〈z(x1, y1)z(x2, y2)〉 =
〈z(x1, y1)〉〈z(x2, y2)〉 = 〈z〉2 for z(x1, y1) 6= z(x2, y2), the same expression results as in
the case of the graded interface, with the decrease in reflectivity essentially given
by the Fourier transform of the distribution of local heights, as this is in effect
the same model. For correlated interface heights, one can distinguish the cases
where the fluctuations remain bounded or are unbounded. In the first case, the
reflectivity shows a perfectly specular component (due to the profile of the average
refractive index) on top of a diffuse contribution due to the fluctuations. In the
converse case, there is no strictly specular component, instead the reflected beam
is broadened as in small-angle scattering. This can be understood by conceptually
replacing the actual interface with a coarsened version thereof, having locally
fluctuating interface normals. The reflected beam can then be considered to be
specularly reflected on these fluctuating interface normals, giving a finite width.

C.2.5 Dynamical diffraction from single crystals

Up to now, the medium was treated in a continuum description, where the ac-
tual discrete atomic nature of matter was averaged out to give a homogeneous
scattering length density. For this approximation to be valid two conditions have
to be met: First, the wavevector transfers have to be small so that interference
effects between the atoms can be neglected, and, further, the effect of a single
atom on the resulting wave has to be small. For both X-rays and neutrons with
wavelengths in the Ångström regime, the latter condition is in general satisfied,3

and for small angles of incidence with respect to high-symmetry lattice planes,
also the first condition is realized.

On the other hand, for wavevector transfers in the vicinity of a low-index Bragg
condition at a perfect crystal, interference effects have to be considered. The
kinematical treatment has shown that reflections will appear exactly where the
condition is satisfied, with a width that is given by the inverse of the dimensions of
the crystal and an area that is proportional to the volume of the crystal. From this
it is obvious that the kinematical approximation has to fail for large crystals, as
the reflected intensity has to be bounded by the incident intensity. Of course, the
solution to this problem is to enforce intensity conservation at the transmissions
and reflections at the respective interfaces, which are guaranteed in the full
dynamical description. Qualitatively, for a crystal oriented in symmetric Bragg

3Even 157Gd, the isotope with the largest neutron resonance in the thermal regime, has a cross
section of only about 2×10−3 Å2, thus a lattice plane attenuates a thermal beam only by a factor of
about 10−3.



60 CHAPTER C. THEORETICAL DESCRIPTIONS OF SCATTERING

geometry (where the surface is parallel to the reflecting planes and the reflected
beam leaves on the side of the incident beam instead of transiting the sample)
at each plane a given part of the intensity is transferred from the incident to
the reflected beam. Of course, this also happens in the reverse direction, but for
a semi-infinite non-absorbing crystal all the intensity will eventually reach the
surface after a number of back-and-forth reflections, giving a reflectivity of unity.

Further, also in the non-absorbing case there is only a finite penetration length.
This diminishing of the wave in the crystal is called extinction. Specifically,
primary extinction refers to the situation in a perfect crystal just related. As
this limits the number of interfering lattice planes and thus the sharpness of the
Bragg reflections, Bragg reflections inherently have finite linewidths also in the
case of perfect crystals.

On the other hand, actual crystals host crystal defects, and can be described as
a mosaic of small crystallites, assumed to be perfect apart from their finite size,
with the spread of orientations called mosaicity. In an ideally imperfect crystal,
the crystallites are much smaller than the primary extinction length. However,
in an analogous argumentation due to intensity conservation also here the wave
inside the crystal becomes attenuated, which is then called secondary extinction.
For employing single crystals as neutron monochromators and analysators, the
angular widths of the reflections due to primary extinction are unnecessarily
small compared to the used beam divergences, giving away intensity. Therefore,
here ideally imperfect crystals are better suited, as their wider reflections reflect
a larger part of the beam.

The dynamical scattering from crystals in symmetric Bragg geometry can be
computed along the lines of the case of multilayers. Specifically, let d be the
spacing between atomic layers. In the case of non-magnetic neutron scattering,
describing the scattering length density as a function of z leads to a sequence
of infinitesimal slabs corresponding to the atomic nuclei separated by slabs of
vacuum. Of course, the amplitude reflectivities and transmittivities of the vacuum
slabs are zero and one, respectively, while the corresponding limits of (C.2.31) and
(C.2.32) give

rslab = γ and tslab = 1+γ with γ= −2iπbn
kz

, (C.2.36)

where n is now the density of scatterers per area in one layer. Note that for
perpendicular incidence this again recovers (C.2.4), and in fact can be obtained
directly by generalizing the derivation of (C.2.4) to non-perpendicular incidence.

Now the crystal is built up of a repeating array of identical slabs that have the
atomic plane at half height. The transmittivity of the repeating slab is just

t′ = tslab = 1+γ, (C.2.37)

while the reflectivity acquires an additional phase factor to account for the path
from the logical slab boundary at half height between the atomic layers to the
layer and back

r′ = eikzdrslab = γeikzd . (C.2.38)
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Figure C.1: Solid: Reflectivity curve of (111) reflection of a semi-infinite elemen-
tal copper single crystal in symmetric Bragg geometry for thermal neutrons of
2200m/s. Dashed: Analogous curve when the absorption cross section is artificially
increased by a factor of 100.

These expressions can now directly be used in the framework of Sect. C.2.4 to
compute the reflectivity and transmittivity of a finite crystal.

The amplitude reflectivity r of a semi-infinite crystal can also be derived in a
simpler way: Naturally, when a further layer is added to the top of such a crystal,
the reflectivity has to stay the same. With (C.2.35), this implies

r = r′+ r(t′2e2ikzd − r′2)
1− r′r

, (C.2.39)

which in turn gives

r2 + r
(
(eikzd −e−ikzd)/γ+2eikzd)︸ ︷︷ ︸

p

+1= 0. (C.2.40)

This equation has the solutions

r1,2 =− p
2
±

√
p2

4
−1. (C.2.41)

As r1r2 = 1, in the generic case of a non-vanishing imaginary part of p exactly one
solution fulfills |r i| < 1 and thus corresponds to the physically possible solution.
Indeed, this solution is given by

r = p
2

(
−1+

√
1−4/p2

)
. (C.2.42)

The corresponding intensity reflectivity for the (111) reflection of elemental copper
is given in Fig. C.1, a so-called Darwin curve.

As was argued above, for weak absorption the reflectivity curve shows total
reflectivity over a finite width. Specifically, for eikzd =−1, which corresponds to
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the Bragg condition, p =−2 and thus r = 1 (which incidentally is also valid in the
case of finite absorption). For the typical case of positive scattering lengths, this
is realized at the low-angle limit of the region of total reflectivity. On the other
hand, in the no-absorption case p = 2 is realized for e−ikzd =−1−2γ, giving the
high-angle boundary of total reflectivity with r =−1. For small γ and lowest-order
Bragg reflection, i.e. kzd ≈π, this implies ∆kz = 4bn with notation as in (C.2.36),
which is the so-called Darwin width.

The qualitative shape of the reflection curve can also be explained by concepts
that are fundamental to solid-state physics: A quantum-mechanical neutron
inside a single crystal experiences a periodic potential. Thus, the free-volume
parabolic dispersion relations are modified, specifically for a weak potential the
effects are significant only at the Brillouin zone boundary, where a band gap opens.
Consider now only the perpendicular dimension z. Due to the band gap there are
perpendicular neutron energies that have no periodic solution of the Schrödinger
equation inside the crystal. Such neutrons can therefore only be reflected. Near
the Brillouin zone boundary for weak potentials, the Bloch states are composed of
essentially two plane waves, with the states above and below the gap differing
in the phases of those two waves relative to each other. Specifically, the Bloch
waves are either symmetric or anti-symmetric with respect to the atomic positions,
giving either large or vanishing probabilities at the atomic positions. For positive
scattering lengths and thus repulsive pseudo-potentials, the anti-symmetric wave
has lower energy. That is, this is the state that is entered by a neutron with an
incidence angle θ0 just at the lower boundary of the region of total reflectivity.

For incidence angle θ0, the neutron has vanishing probability density at the
atomic positions. Thus, there will be no refractive effects, so that k′

z = kz and
therefore θ0 is given by the Bragg condition without refractive corrections. An
additional interesting consequence is that neutrons are also not absorbed even for
non-vanishing nuclear absorption cross sections. On the other hand, an incidence
angle at the high-angle boundary (assuming positive b) would give symmetric
Bloch waves, subject to refractive effects (which thus explain qualitatively the
shifting of the region of total reflectivity with respect to the Bragg condition) and
absorption. This explains the decrease of the reflectivity towards higher angles
in the case of significant absorption as illustrated in Fig. C.1, which is called the
Borrmann effect.

The only approximation in the above derivation was the kinematical treatment
of the effect of single atomic planes on the wave fields, which as a rule is valid.
For single crystals at non-zero temperatures with displacements of the atoms
from the ideal sites, the atomic planes become diffuse. Also for magnetic crystals,
where neutrons are scattered at the spatially inhomogeneous magnetization, as
well as in the X-ray case with scattering at the electronic clouds, the situation is
analogous. In these cases, due to the partial destructive interference the extinction
length increases, and the asymmetry in the reflection curves under absorption
decreases, as for all Bloch states there is some probability for absorption.

A final comment concerns the situation in Laue (transmission) geometry or finite
crystal thicknesses in Bragg geometry. Here the reflectivities and transmittivities
vary sensitively with the crystal thicknesses. Specifically for Laue geometry,
the intensity as it passes through the crystal shifts oscillatingly between the
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diffracted and transmitted beam. This is called the Pendellösung effect. When
large perfect single crystals with low absorption are available, a measurement of
the corresponding period can give a very accurate value of the refractive effects in
the medium and thus of the scattering lengths.

C.3 Quantum-mechanical treatment of scattering

For correctly describing scattering processes from samples that fail to be perfectly
rigid and static configurations, a quantum-mechanical treatment is necessary.
Specifically, this necessitates a consistent treatment of the compound system
probe plus sample, going beyond merely considering the probe particle as waves
as has been done up to now. The fundamentals of the pertaining theory will be
derived here.

C.3.1 Basic expression for the differential cross section

The starting point is given by the expression for the first-order transition rate
from state σi to state σf of a generic system

Wσi→σf =
2π
ħ

∣∣〈σf|V |σi〉
∣∣2δ(Eσi −Eσf ), (C.3.1)

where V is the interaction potential and the δ distribution term enforces energy
conservation. This expression is often called Fermi’s golden rule, and it follows
from a treatment of the problem in time-dependent perturbation theory in lowest
order. Specifically, the states σi and σf are assumed to be eigenstates of some
unperturbed Hamiltonian and V is a weak perturbation thereof. For the problem
at hand, we will assume σi and σf to be elements of the Cartesian product space of
the eigenstates of free neutrons and those of the sample written explicitly as |kiλi〉
and |kfλf〉, and V to be their interaction potential. At first, we will consider only
positional degrees of freedom of the neutrons explicitly, and treat effects due to
spin as a later addition. With the derivation resting on lowest-order perturbation
theory, its regime of validity is equal to the one of kinematical elastic scattering,
and in effect the results will turn out to be equivalent when the sample can be
treated as classical.

The (double) differential scattering cross section d2σ
dΩdEf

is the number of neutrons
scattered per unit time into an infinitesimal solid angle dΩ lying in a given
direction with a final energy within an infinitesimal window of width dEf, divided
by the incident flux Φ. To fix the prefactors, we assume to system (sample and
neutrons) to be confined in some large box with size L, that is, all neutron states
have to conform to the assumed boundary conditions, giving a density of allowed
neutron states of L/(2π)3. As we have

Ef =
ħ2k2

f
2mn

(C.3.2)
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and thus

dEf

dkf
= ħ2kf

mn
, (C.3.3)

the number of final states within the windows of directions and energies to be
considered is

L
(2π)3

dΩk2
f dkf =

L
(2π)3

dΩk2
f

dkf

dEf
dEf =

L
(2π)3

mnkf

ħ2 dΩdEf, (C.3.4)

into any of which the incident neutrons are scattered with a rate according to
(C.3.1). On the other hand, a normalized incident wavefunction

ψ= 1p
L

eikir (C.3.5)

corresponds to a single neutron within the box, with a velocity of

v = ħk
mn

, (C.3.6)

and thus a flux (transiting particles per area and time) of

Φ= v
L

= ħki

mnL
. (C.3.7)

Putting all together, we get a number of scattered particles per flux of

d2σ
∣∣
λi→λf

=Wki,λi→kfλf

L
(2π)3

mnkf

ħ2 dΩdEf
mnL
ħki

(C.3.8)

and thus

d2σ

dΩdEf

∣∣∣∣
λi→λf

=Wki,λi→kfλf

m2
nL2

(2πħ)3
kf

ki
, (C.3.9)

which denotes the partial double differential cross sections for neutrons under the
condition that the initial and final sample states are λi and λf, respectively.

As L becomes large in this expression, Wki,λi→kfλf decreases due to the normal-
ization of the wavefunctions, while the second factor increasing correspondingly,
giving a result that is independent of L. To state this more clearly in an expression
that is independent of the box volume L, from here on we identify the state of
the neutron k with the unnormalized wavefunctions ψ = eikr. This gives the
preliminary expression

d2σ

dΩdEf

∣∣∣∣
λi→λf

= kf

ki

( mn

2πħ2

)2∣∣〈kfλf|V |kiλi〉
∣∣2δ(Eki +Eλi −Ekf −Eλf ). (C.3.10)

With a potential made up of Fermi pseudo-potentials

V (r,R1, . . . ,RN )= 2πħ2

mn

∑
j

b jδ(r−R j) (C.3.11)
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where R j are the positions (or rather their associated operators) of the atoms in
the sample and b j the respective scattering lengths, which we constrain here to be
real in order to make the Hamiltonian operators self-adjoint, the matrix element
evaluates as

〈kfλf|V |kiλi〉 =
2πħ2

m
〈λf|

∫
dre−ikfr

∑
j

b jδ(r−R j)eikir|λi〉

= 2πħ2

m

∑
j

b j〈λf|eiQR j |λi〉.
(C.3.12)

The partial double differential scattering cross section conditional to sample
transitions from λi to λf now reads

d2σ

dΩdEf

∣∣∣∣
λi→λf

= kf

ki

∣∣∑
j

b j〈λf|eiQR j |λi〉
∣∣2δ(Eki +Eλi −Ekf −Eλf ). (C.3.13)

We proceed now by transforming the action of the δ distribution in energy, which is
conceptually simple to understand but practically unwieldy, to a time propagation.
Specifically, the Fourier transform of a δ distribution is just a constant∫

dxeiξxδ(x)= 1, (C.3.14)

thus the inverse transform of a constant is again a δ distribution

1
2π

∫
dξe−iξx1= δ(x). (C.3.15)

Substituting

x = Eki +Eλi −Ekf −Eλf (C.3.16)

and

ξ= t
ħ (C.3.17)

gives

δ(Eki +Eλi −Ekf −Eλf )=
1

2π

∫
d(t/ħ)ei(Ekf+Eλf−Eki−Eλi )t/ħ

= 1
2πħ

∫
dtei(Eλf−Eλi )t/ħe−iωt,

(C.3.18)

where the neutron energy transfer is written as its frequency equivalent

Eki −Ekf =ħω, (C.3.19)

which is positive for energy loss of the neutron. Plugging this into the expression
for the partial double differential cross section gives

d2σ

dΩdEf

∣∣∣∣
λi→λf

= kf

ki

1
2πħ

∑
j, j′

b jb j′〈λi|e−iQR j′ |λf〉〈λf|eiQR j |λi〉∫
dtei(Eλf−Eλi )t/ħe−iωt, (C.3.20)
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where it seems that apart from additional complexity nothing has been gained.
However, as we have

H|λ〉 = Eλ|λ〉 (C.3.21)

for initial and final sample states, where H is the unperturbed Hamiltonian of
the sample, we equally have

e−iHt/ħ|λ〉 = e−iEλ t/ħ|λ〉. (C.3.22)

Thus, the partial double differential cross section can be written as

d2σ

dΩdEf

∣∣∣∣
λi→λf

= kf

ki

1
2πħ

∑
j, j′

b jb j′
∫

dt〈λi|e−iQR j′ |λf〉〈λf|eiHt/ħeiQR j e−iHt/ħ|λi〉e−iωt

= kf

ki

1
2πħ

∑
j, j′

b jb j′
∫

dt〈λi|e−iQR j′ (0)|λf〉〈λf|eiQR j(t)|λi〉e−iωt.

(C.3.23)

The time-dependent Heisenberg operators

R j(t)= eiHt/ħR je−iHt/ħ (C.3.24)

used here are just a notational device to transfer the passing of time, which in the
Schrödinger picture affects the wavefunctions describing the sample state with
time-independent operators, to the operators.

The expression for the partial double differential cross section obtained above now
lends itself nicely to derive the experimentally accessible double differential cross
section, where any final sample state is possible and the initial states are given
by their thermal population. This results in the compact expression

d2σ

dΩdEf
= kf

ki

1
2πħ

∑
j, j′

b jb j′
∫

dt〈e−iQR j′ (0)eiQR j(t)〉e−iωt. (C.3.25)

Here the notation

〈A〉 =∑
λ

pλ〈λ|A|λ〉 (C.3.26)

denotes the thermal average of an operator A, where pλ are the thermal popula-
tions of the respective states

pλ = e−Eλ/kBT

Z
(C.3.27)

with the partition function

Z =∑
λ

e−Eλ/kBT . (C.3.28)

In deriving (C.3.25) it was further used that the final sample states λf are a
complete orthonormal basis of the sample’s Hilbert space, thus summing |λf〉〈λf|
over all λf is equal to the identity operator. Note that the operator in (C.3.25)
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in general cannot be further contracted, as the operators R j′ (0) and R j(t) do not
commute for t 6= 0 because the Hamilton operator defining R j(t) in (C.3.24) also
includes p j′ which does not commute with R j′ . The resulting consequences will be
discussed in more detail below.

Apart from verifying the mathematical correctness of the techniques used in the
derivation given here, it is instructive to consider also their physical implications.
As stated above, the experimentally measured double differential cross section is
the sum over all possible combinations of initial and final sample states, which
in the original formulation (C.3.13) are connected by the requirement of energy
conservation. In this formulation, the scattering process conceptually happens
instantaneous. The mathematical trick of Fourier-transforming the requirement
of energy conservation to the temporal domain and thus to define time-dependent
operators allowed to sum over all final states. In this view, the neutron interacts
with a dynamically evolving system over an extended time period, with energy
conservation being encoded in the evolution of the system. The associated time-
dependent operators give then rise to a further physical interpretation of the
scattering signal, as will be discussed in Sect. C.4 below.

C.3.2 The neutron spin during scattering

The treatment above considered only the positional degrees of freedom of a neu-
tron, thus neglecting its other degree of freedom, i.e. its spin. As neutrons are
spin- 1

2 particles, there are exactly two eigenstates with respect to the chosen quan-
tization direction, which in the following will be denoted as |u〉 and |v〉. In some
situations, analyzing whether the neutron spin changes in scattering (termed
spin-flip processes) or not (non-spin-flip processes) can give much more direct
access to specific properties of the sample. The pertinent issues will be treated
here.

The precondition for being sensitive to spin flipping in the sample is to start out
with a polarized beam. Specifically, when the beam has been polarized along
some direction (which by convention is taken to be the z direction), the beam’s
polarization vector points along this direction and has a length that varies linearly
from 1 (when all neutrons are in the same spin state) to 0 (when both states are
equally probable). This length is also called polarization.

The necessary modification to the treatment in the previous section is that the
states in (C.3.10) are now distinguished also by their spin states, and that the
interaction potential with a given atom is replaced by

Vj(r)= 2πħ2

m
δ(r−R j) (b̂ j + c jI jσ)︸ ︷︷ ︸

=Vj

. (C.3.29)

Here I j are the spins of the respective nuclei (or rather their operators) and c j
the respective coupling strengths. Note that this formulation applies only to
non-magnetic samples. The effects due to atomic magnetism will be treated in
detail below, here it suffices to say that they are similar to the effect of nuclear
spins with the added complication that the atomic spins can be ordered and that
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the coupling strengths are effectively Q-dependent via the magnetic form factor.

The action of the components of the spin operator onto |u〉 and |v〉, which are the
eigenstates with respect to its z-component, are

σx|u〉 = |v〉 σy|u〉 = i|v〉 σz|u〉 = |u〉
σx|v〉 = |u〉 σy|v〉 =−i|u〉 σz|v〉 =−|v〉 (C.3.30)

The matrix elements in (C.3.25) are now〈
λfσf

∣∣VjeiQR j
∣∣λiσi

〉= 〈
λf

∣∣〈σf|Vj|σi〉eiQR j
∣∣λi

〉
. (C.3.31)

Considering for the moment only the inner matrix element, we have

Vj|u〉 =
(
b̂ j + c j(I

j
xσx + I j

yσy + I j
zσz)

)∣∣u〉
= b̂ j|u〉+ c j(I

j
x + iI j

y)|v〉+ c j I
j
z|u〉.

(C.3.32)

|u〉 and |v〉 are orthonormal, so this leads to

〈u|Vj|u〉 = b̂ j + c j I
j
z 〈v|Vj|u〉 = c j(I

j
x + iI j

y)

〈u|Vj|v〉 = c j(I
j
x − iI j

y) 〈v|Vj|v〉 = b̂ j − c j I
j
z (C.3.33)

As was discussed in A.2.2, apart from exceptional circumstances both the assign-
ment of different isotopes to the atomic positions as well as the configuration of
the nuclear spins will be completely random. Thus the matrix elements (C.3.33)
pertaining to the neutron spin can be pulled out of the total matrix element,
leading to an expression analogous to (C.3.25) with effective scattering lengths
bw2,w1

j = 〈w2|Vj|w1〉 that depend on the spins of incident and outgoing neutrons.
In the following, the atomic indices j will be suppressed.

The average values of (C.3.33) are〈
bu,u〉

spin,iso =
〈
b̂
〉

iso
〈
bv,u〉

spin,iso = 0〈
bu,v〉

spin,iso = 0
〈
bv,v〉

spin,iso =
〈
b̂
〉

iso, (C.3.34)

as
〈
Ix

〉
spin = 〈

I y
〉

spin = 〈
Iz

〉
spin = 0. Now the coherent scattering is sensitive

only to this averaged scattering length, so it follows immediately that coherent
scattering is purely in the non-spin-flip channel, and that the coherent scattering
length bcoh = 〈

b̂
〉

iso.

Consequently, in the non-magnetic case spin-flip scattering contributes only to
incoherent scattering. As the incoherent cross section is proportional to the
variance of the effective scattering lengths due to isotopic assignment and spin
configuration, we compute the averages of the squared effective scattering lengths
in the respective spin channels〈∣∣bu,u∣∣2〉

spin,iso =
〈∣∣bv,v∣∣2〉

spin,iso =
〈
b̂2〉

iso +
〈
c2I2

z
〉

spin,iso (C.3.35)

and 〈∣∣bv,u
j

∣∣2〉
spin,iso =

〈∣∣bu,v
j

∣∣2〉
spin,iso =

〈
c2I2

x
〉

spin,iso +
〈
c2I2

y
〉

spin,iso. (C.3.36)
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We know that the spin states are also eigenstates to the operator

I2 = I2
x + I2

y + I2
z (C.3.37)

with eigenvalue I(I +1), thus for random nuclear spins we have〈
I2

x
〉

spin = 〈
I2

y
〉

spin = 〈
I2

z
〉

spin = 1
3

I(I +1). (C.3.38)

The contributions in the four spin channels are therefore

σ
u,u
inc =σv,v

inc = 4π
(〈

b̂2〉
iso −

〈
b̂
〉2

iso +
1
3

〈
c2I(I +1)

〉
iso

)
(C.3.39)

and

σ
u,v
inc =σ

v,u
inc = 4π

2
3

〈
c2I(I +1)

〉
iso. (C.3.40)

Thus, we see that the incoherent cross section due to nuclear spin for non-spin-flip
scattering is half of the value for spin-flip scattering, and that the incoherent cross
section due to isotopic assignement is again only in the non-spin-flip channel. Thus,
for instance in the case of natural Ni, which consists of a number of isotopes with
nearly all having spin I = 0, the incoherent scattering is nearly exclusively non-
spin-flip, while for V with essentially just one isotope, the incoherent scattering
shows the 1 : 2 ratio of non-spin-flip to spin-flip scattering.

C.4 The van Hove formalism

The correlation functions as introduced by Léon van Hove (1954) establish a link
between the dynamical behaviour of the nuclei in the sample and the double
differential cross sections in quasi-elastic and inelastic scattering. Canonically,
they are discussed with respect to a non-magnetic scattering system composed
only of a single kind of element. How this formalism can be generalized to multi-
component systems will be pointed out below.

C.4.1 Correlation functions

The starting point is to define a function S(Q,ω) so that the coherent part of the
double differential cross section (C.3.25), that is, where the scattering lengths b j
are replaced by their expected values, for an elemental system can be written as( d2σ

dΩdEf

)
coh

= σcoh

4π
kf

ki

1
2πħ

∫
dt

∑
j, j′

〈e−iQR j′ (0)eiQR j(t)〉e−iωt

= σcoh

4π
kf

ki
NS(Q,ω),

(C.4.1)

with N the number of nuclei. Thus,

S(Q,ω)= 1
2πħN

∫
dt

∑
j, j′

〈e−iQR j′ (0)eiQR j(t)〉e−iωt. (C.4.2)
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This function is called the (coherent) scattering function or dynamical structure
factor.4 The (coherent) intermediate scattering function is its temporal Fourier
transform (apart from a factor ħ)

I(Q, t)=ħ
∫

dωS(Q,ω)eiωt = 1
N

∑
j, j′

〈e−iQR j′ (0)eiQR j(t)〉, (C.4.3)

and the (time-dependent) pair-correlation function is in turn the spatial inverse
Fourier transform of the intermediate scattering function

G(r, t)= 1
(2π)3

∫
dQI(Q, t)e−iQr = ħ

(2π)3

∫
dQdωS(Q,ω)e−iQr+iωt

= 1
(2π)3N

∫
dQ

∑
j, j′

〈e−iQR j′ (0)eiQR j(t)〉e−iQr.
(C.4.4)

Analogously, the incoherent scattering function, incoherent or self-intermediate
scattering function and the self-correlation function are defined analogously in
terms of the incoherent part of the double differential cross section

( d2σ

dΩdEf

)
inc

= σinc

4π
kf

ki
NSi(Q,ω), (C.4.5)

that is,

Si(Q,ω)= 1
2πħN

∫
dt

∑
j
〈e−iQR j(0)eiQR j(t)〉e−iωt, (C.4.6)

Is(Q, t)= 1
N

∑
j
〈e−iQR j(0)eiQR j(t)〉, (C.4.7)

and

Gs(r, t)= 1
(2π)3N

∫
dQ

∑
j
〈e−iQR j(0)eiQR j(t)〉e−iQr. (C.4.8)

To actually perform the inverse Fourier transform in the definition of G(r, t) and
Gs(r, t) and to write these quantities only in terms of positional coordinates, the
non-commuting of the position operators R j(t) has to be respected. In order to
separate one of the two out of the integral we first artificially insert another
integral over a δ distribution and exchange the order of integration∫

dQe−iQR j′ (0)eiQR j(t)e−iQr =
∫

dQ
∫

dr′δ
(
r′−R j′ (0)

)
e−iQr′eiQR j(t)e−iQr

=
∫

dr′δ
(
r′−R j′ (0)

)∫
dQe−iQ

(
r′−R j(t)+r

)
︸ ︷︷ ︸

=(2π)3δ
(
r′−R j(t)+r

) . (C.4.9)

4To quote Squires (1978): “It is also known as the scattering law, though why a function should be
called a law is a mystery to the author.” The present author shares this view.
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Therefore

G(r, t)= 1
N

∫
dr′

∑
j, j′

〈
δ
(
r′−R j′ (0)

)
δ
(
r′+r−R j(t)

)〉
(C.4.10)

as well as

Gs(r, t)= 1
N

∫
dr′

∑
j

〈
δ
(
r′−R j(0)

)
δ
(
r′+r−R j(t)

)〉
. (C.4.11)

Defining the particle-density operator

ρ(r, t)=∑
j
δ
(
r−R j(t)

)
(C.4.12)

the pair-correlation function can further be written as

G(r, t)= 1
N

∫
dr′

〈
ρ(r′,0)ρ(r′+r, t)

〉
, (C.4.13)

and the self-correlation function is given by

Gs(r, t)=
∫

dr′
〈
ρs(r′,0)ρs(r′+r, t)

〉
(C.4.14)

with

ρs(r, t)= δ(
r−R j(t)

)
(C.4.15)

the density operator of any specific particle j.

The generalization to multi-element systems is straight-forward: taking for in-
stance (C.4.10), the double sum over the particles has to be split into L×L partial
sums for an L-element system according to the species of the respective particles,
giving partial pair-correlation functions Gα,β(r, t) for the correlations between
particles of elements α and β. Analogously partial intermediate scattering func-
tions and dynamical structure factors can be defined, so that the coherent double
differential cross section is given by the sum over the partial dynamical structure
factors, weighted by the respective products of scattering lengths. In the same
way, L element-specific self-correlation functions, incoherent intermediate scat-
tering functions and incoherent scattering functions can be defined to write the
incoherent double differential cross sections.

C.4.2 Properties of the correlation functions

Expression (C.3.13) shows that, as the Schrödinger operators R j are self-adjoint,
the partial double differential cross sections for λ1 →λ2 is the same as the one for
λ2 →λ1. Thus, the difference between S(Q,ω), which is essentially these partial
double differential cross sections summed over all initial and final states with a
weighting proportional to the Boltzmann factor of the initial state, and S(−Q,−ω),
the double differential cross section for the reverse transitions, is just that in
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the latter case the final states would determine the weighting. This leads to the
relation

S(Q,ω)= eħω/kBT S(−Q,−ω), (C.4.16)

which is known as the principle of detailed balance. In words, it means that, all
other things being equal, the probability for the neutron to lose energy (ω> 0) is
larger than to gain energy. This principle is not restricted to neutron scattering,
more generally in any system in thermal equilibrium the frequencies of back and
forth transitions between any two states have to be equal, thus the rates have to
vary inversely proportional to the respective weights of the initial states in the
ensemble.

As the double differential cross section (C.4.1) is real (for real interaction po-
tentials, that is, in the absence of absorption as is always assumed here), it
immediately follows that S(Q,ω) is real as well

S(Q,ω)= S∗(Q,ω). (C.4.17)

From this expression Fourier transformation gives

I(Q, t)= I∗(Q,−t) (C.4.18)

and

G(r, t)=G∗(−r,−t). (C.4.19)

Using (C.4.16) we obtain

I(Q, t)=ħ
∫

dωS(Q,ω)eiωt =ħ
∫

dωS(−Q,−ω)eħω/kBTeiωt

=ħ
∫

dωS(−Q,ω)e−ħω/kBTe−iωt = I(−Q,−t+ iħ/kBT)
(C.4.20)

and analogously

G(r, t)=G(−r,−t+ iħ/kBT)=G∗(r, t− iħ/kBT). (C.4.21)

Thus, G(r, t) in general is complex. This is inherently a quantum-mechanical
effect: in the classical limit with ħ→ 0, the position operators and therefore also
the particle-density operators commute also for different times. As a consequence
we have in this case

G(r, t)= 1
N

∫
dr′

〈
ρ(r′,0)ρ(r′+r, t)

〉= 1
N

∫
dr′

〈
ρ(r′+r, t)ρ(r′,0)

〉
=G(−r,−t)=G∗(r, t)

(C.4.22)

with the last equality due to (C.4.19).

C.4.3 Classical interpretation of the correlation functions

Interpretating R j(t) in (C.4.10) as classical particle positions, the pair-correlation
function Gcl(r, t) is just the probability density for the position r′+r to be occupied
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by an atom at time t if position r′ was occupied by any atom (either the same
or a different one) at time 0. Analogously, the self-correlation function in the
classical interpretation Gcl

s (r, t) is the probability density for the position r′+r
to be occupied by an atom at time t if position r′ was occupied by the same atom
at time 0, or in other words, for an atom to move a distance r within a time
t. With the connection of the correlation functions to the scattering functions
and thus to the experimentally accessible double differential cross sections, it
would be very tempting to derive expressions for the correlation functions in a
classical setting and compare them to the experiments, as in the general case full
quantum-mechanical calculations become unfeasible.

In general, quantum-mechanical effects become negligible at large distances
and long times, that is, for ħ2q2/2m ¿ kBT and ħω¿ kBT, with m the particle
mass. At low temperatures, diffusive dynamics in the solid state can become
arbitrarily slow, so that the classical approximation is valid. On the other hand,
oscillatory dynamics belong clearly to the full quantum-mechanical regime, where
the quantization of energies is reflected in the discreteness of neutron energy
transfers as will be discussed in more detail below. Diffusive dynamics in the
liquid state constitute a middle ground, and especially here the following issue is
relevant:

Specifically, as has been pointed out already below, in the classical approximation
the pair-correlation function is real. As a consequence, the resulting scattering
function as essentially its Fourier transform has to be even, that is

Scl(Q,ω)= Scl(−Q,−ω), (C.4.23)

which obviously violates detailed balance. Thus, the classical form of the pair-
correlation function has to be expected to be a poor approximation to the actual
expression. Schofield (1960) has suggested that a better approximation is afforded
by setting

G(r, t)=Gcl(r, t− iħ/2kBT) (C.4.24)

or

S(Q,ω)= Scl(Q,ω)eħω/2kBT , (C.4.25)

thereby fulfilling detailed balance. This is the approach typically taken in inter-
pretating neutron scattering data.

A case where the classical interpretation becomes valid is constituted for t →∞, so
that the Heisenberg operators R j(t) become ordinary random variables. Further,
as all correlations decay for long times, we have

G(r,∞)= 1
N

∫
dr′

〈
ρ(r′)

〉〈
ρ(r′+r)

〉
. (C.4.26)

After a double (inverse) Fourier to S(Q,ω), this gives a δ distribution in frequency,
that is, an ideally perfectly sharp elastic line with a corresponding variation
in intensity with Q. Note that such elastic scattering exists only for crystals,
where

〈
ρ(r′)

〉
shows modulations according to the temporally stable translational

periodicity, while in a liquid the diffusive dynamics lead to a flat
〈
ρ(r′)

〉
and thus

no elastically scattered intensity apart from the forward direction.
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On the other hand, also for t = 0 the classical approximation is strictly valid. Here
the operators in (C.4.10) do commute, resulting in

G(r,0)= δ(r)+ g(r) (C.4.27)

where

g(r)= 1
N

∑
j 6= j′

〈
δ(r−R j +R j′ )

〉
(C.4.28)

is the static pair-distribution function.

Transforming back to S(Q,ω), the pair-correlation function evaluated at t = 0, that
is, essentially g(r), contributes equally for all ω, or otherwise, G(r,0) is just S(Q,ω)
integrated over ω. It is tempting to identify this with the (single-)differential cross
section dσ/dΩ, that is, the case of diffraction where all neutrons scattered into a
given direction irrespective of energy are counted. However, the catch is that the
equivalence of direction and wavevector transfer is valid only for a given energy
transfer. Assuming this correspondence is what constitutes the so-called static
approximation. Specifically, in the static approximation the diffraction differential
cross section evaluates as( dσ

dΩ

)sa

coh
= σcoh

4π
NI(Q,0) (C.4.29)

with Q corresponding to the considered outgoing direction. Of course, if there
is only elastic scattering (which however is actually not even fulfilled at zero
temperature due to quantum-mechanical zero-point motion), the above expression
is exact.

The degree of validity of the static approximation depends on the characteristic
energy transfers experienced during scattering relative to the energy of the probe.
If the energy transfers are small (∆E/E ¿ 1), the equivalence between directions
and wavevector transfers holds, and the static approximation is valid. For X-
rays, this is typically the case, and static pair-distribution functions g(r) are
routinely derived from diffraction patterns taken with diffractometers without
energy analysis. On the other hand, for thermal neutrons this is in general not
fulfilled, as their energies are comparable to typical excitation energies. Note,
however, that luckily the imporant case of studying Bragg peak positions on
a diffractometer is not affected by these issues, as the Bragg intensities are
exclusively due to elastic scattering. In contrast, for studies of the diffuse intensity
between the peaks either energy analysis has to be performed to extract the elastic
intensity or the intensity at a given outgoing direction has to be modelled as an
integral over S(Q,ω) along the appropriate path through four-dimensional (Q,ω)-
space.

C.5 Fundamentals of magnetic scattering

Up to now, exclusively nuclear neutron scattering was considered, that is, only
interactions with the sample due to the nuclear force. However, via its magnetic
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moment a neutron experiences also electromagnetic interactions with the sample,
specifically with the internal magnetic field resulting from both the magnetic
moments and motions of the charged particles making up the sample. According to
the different masses, for both mechanisms the effect of electrons is proportionally
larger than of protons. The corresponding scattering contributions have the same
order of magnitude as the nuclear contributions, so that neutron scattering is by
far the most important experimental method to microscopically study magnetism.
The fundamental results of the theory for the scattering of unpolarized neutron
beams will be given here, where due to the complexity of the matter steps in the
derivation will often be skipped.

C.5.1 The neutron-electron interaction

A given electron with magnetic dipole moment

µe =−2µBs (C.5.1)

with the origin chosen at the position of the electron, where s is the electron’s spin
(operator),5 and momentum (operator) p has an associated magnetic field of

B(R)= µ0

4π

(
∇×

(µe ×R
R3

)
− 2µB

ħ
p×R

R3

)
, (C.5.2)

where the first term follows from the magnetic field of a dipole and the second
from the Biot-Savart law with the current element due to the electron of

Idl=− e
me

p=−2µB

ħ p. (C.5.3)

With the potential energy of a dipole in a field

V =−µB, (C.5.4)

the potential felt by the neutron can be written as

V (R;σ)=−µ0γµN2µBσ

(
1

4π
∇×

(s×R
R3

)
︸ ︷︷ ︸

WS

+ 1
4πħ

p×R
R3︸ ︷︷ ︸

WL

)
, (C.5.5)

using

µn =−γµNσ (C.5.6)

as the magnetic dipole moment of the neutron with the nuclear magneton

µN = eħ
2mp

(C.5.7)

and the dimensionless factor γ = 1.913. This is the canonical notation in the
neutron scattering community, but note that γ is not the gyromagnetic ratio
(which has dimension s−1T−1), even though this is typically also denoted by γ, and
neither it is the dimensionless g-factor (actually it is the negative of the half of
the neutron’s g =−3.826).

5Note that by accepted convention the electron spin s is defined to have eigenvalues of ± 1
2 , while

in the neutron scattering community the operator σ defining the neutron’s magnetic moment is
represented by the Pauli operator and thus has eigenvalues of ±1, even though in both cases spin- 1

2
particles are considered. Correctly, the neutron’s spin would be σ/2, but this distinction is typically
neglected.
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C.5.2 The partial differential scattering cross section due
to electrons

Applying the generic expression for the partial cross section (C.3.10) to the case of
electrons, the neutron spins have to be explicitly considered, giving

d2σ

dΩdEf

∣∣∣∣
σi,λi→σfλf

= kf

ki

( mn

2πħ2

)2∣∣〈kfσfλf|V |kiσiλi〉
∣∣2δ(ħω+Eλi −Eλf ). (C.5.8)

Now the matrix elements of WS and WL, responsible for interaction with the
spin and orbital components of the magnetization, with respect to the neutron
spatial coordinates have to be computed. After some purely mathematical steps
the results are

〈kf|WS j|ki〉 = eiQr j
Q×s j ×Q

|Q|2 (C.5.9)

and

〈kf|WL j|ki〉 =
i
ħeiQr j

p j ×Q
|Q|2 , (C.5.10)

where r j is the position of electron j. Further, collecting the prefactors gives

µ0γµN2µB︸ ︷︷ ︸
from (C.5.5)

× mn

2πħ2︸ ︷︷ ︸
from (C.5.8)

= γµ0
eħ

2mp
2

eħ
2me

mn

2πħ2 ≈ γµ0

4π
e2

me
= γr0, (C.5.11)

where r0 is the classical electron radius (also called Thomson scattering length)
and neutron and proton masses have been equated.

Defining the operators

Ŵ⊥S = 1
|Q|2

∑
j

eiQr j
(
Q×s j ×Q

)
(C.5.12)

and

Ŵ⊥L = i
ħ|Q|2

∑
j

eiQr j
(
p j ×Q

)
(C.5.13)

the partial differential cross section reads

d2σ

dΩdEf

∣∣∣∣
σi,λi→σfλf

= (γr0)2
kf

ki

∣∣〈σfλf|σ(Ŵ⊥S+Ŵ⊥L)|σiλi
〉∣∣2δ(ħω+Eλi−Eλf ). (C.5.14)

Defining further the electron spin density operator

ρS(r)=∑
j
δ(r−R j)s j (C.5.15)

we see that we can write Ŵ⊥S as the component perpendicular to Q

Ŵ⊥S = 1
|Q|2

(
Q×ŴS ×Q

)
(C.5.16)
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of an operator

ŴS =∑
j

eiQr j s j (C.5.17)

that is the Fourier transform of the electron spin density operator. By more
involved calculations a formally analogous result is obtained for the orbital com-
ponent

Ŵ⊥L =− 1
2µB

1
|Q|2

(
Q×M̂L(Q)×Q

)
(C.5.18)

where M̂L(Q) is the Fourier transform of the magnetization due to the orbital
magnetic moments. Indeed, by defining also a spin magnetization operator

MS(r)=−2µBρS(r) (C.5.19)

the analogy becomes complete, so that (C.5.14) can be written in terms of the
Fourier transform of the total magnetization’s component perpendicular to Q

d2σ

dΩdEf

∣∣∣∣
σi,λi→σfλf

=
( γr0

2µB

)2 kf

ki

∣∣〈σfλf|σM̂⊥|σiλi
〉∣∣2δ(ħω+Eλi −Eλf ). (C.5.20)

Thus, neutron scattering is sensitive always only on the perpendicular component
of the sample magnetization.

C.5.3 The general double differential cross section

To now obtain the full double differential cross section, the same program as in
Sect. C.3.1 has to be performed, that is, these partial differential cross sections
have to be summed over all final states and averaged (with the correct weighting)
over all initial states, where now also the neutron spin is explicitly considered. As
the neutron spin does not affect the argument of the δ distribution, the summation
with respect to it can be performed before the δ distribution is transformed. That
is, we need to compute∑

σi,σf

pσi

∣∣〈σfλf
∣∣σM̂⊥

∣∣σiλi
〉∣∣2. (C.5.21)

The inner product σM̂⊥ is just the sum of the products of the components, and
the neutron spin and the electron coordinates are independent degrees of freedom.
Thus, these matrix elements are the product of matrix elements in the respective
degrees of freedom〈

σfλf
∣∣σαM̂⊥,α

∣∣σiλi
〉= 〈σf|σα|σi〉〈λf|M̂⊥,α|λi〉 (C.5.22)

where α is a specific Cartesian coordinate axis. We treat for now only the first
factor. Summing over the final neutron spin states gives∑

α,β

∑
σf

〈σi|σα|σf〉〈σf|σβ|σi〉 =
∑
α,β

〈σi|σασβ|σi〉. (C.5.23)
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Now we distinguish between α=β and α 6=β. Due to the neutron’s spin 1
2 it has

two spin states. With the expressions for the pertaining spin algebra (C.3.30) we
have

〈u|σ2
α|u〉 = 〈v|σ2

α|v〉 = 1 (C.5.24)

and for α 6=β

〈u|σασβ|u〉 =−〈v|σασβ|v〉 =±i. (C.5.25)

With

pu = pv = 1
2

(C.5.26)

for unpolarized incident neutrons we get

∑
σi,σf

pσi

∣∣〈σfλf
∣∣σM̂⊥

∣∣σiλi
〉∣∣2 = ∑

α,β
〈λi|M̂∗

⊥,β|λf〉〈λf|M̂⊥,α|λi〉
∑
σi

pσi〈σi|σβσα|σi〉︸ ︷︷ ︸
=δα,β

=∑
α

〈λi|M̂∗
⊥,α|λf〉〈λf|M̂⊥,α|λi〉

(C.5.27)

Thus we get for the full double differential cross section

d2σ

dΩdEf
=

( γr0

2µB

)2 kf

ki

∑
λf,λi

pλi

∑
α

〈λi|M̂∗
⊥,α|λf〉〈λf|M̂⊥,α|λi〉δ(ħω+Eλi −Eλf )

=
( γr0

2µB

)2 kf

ki

∑
α,β

(
δα,β−

QαQβ

|Q|2
)

∑
λf,λi

pλi〈λi|M̂∗
α|λf〉〈λf|M̂β|λi〉δ(ħω+Eλi −Eλf )

(C.5.28)

using the identity

M̂∗
⊥M̂⊥ =

(
M̂∗− (M̂∗Q)Q

|Q|2
)(

M̂− (M̂Q)Q
|Q|2

)
= M̂∗M̂− (M̂∗Q)(M̂Q)

|Q|2

= ∑
α,β

(
δα,β−

QαQβ

|Q|2
)
M̂∗

αM̂β

(C.5.29)

in the last step. Thus, we have arrived again at an expression where the properties
of the sample are separated from the specifics of the scattering process.

C.5.4 Spin-only scattering and the magnetic form factor

An important special case given by scattering due to spin only, that is, where
there is no orbital contribution to the magnetization. Further, we assume that the
unpaired electrons are localized close to the nuclear positions, so that the concept
of spin magnetization due to the single atoms is well-defined (this is known as the
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Heitler-London model). Thus, the spin contribution due to the distinct electrons
(C.5.17) can be reduced to an expression involving atoms

ŴS =∑
n

eiQRn
∑
jn

eiQ∆r jn s jn (C.5.30)

where Rn are the atomic positions and ∆r jn the positions of the respective elec-
trons relative to the nucleus. Thus, the contribution to the matrix element due to
atom n is

〈λf|ŴS|λi〉n = 〈λf|eiQRn
∑
jn

eiQ∆r jn s jn |λi〉. (C.5.31)

In the typical case where transitions of the orbital states of the electrons or of the
spin quantum numbers of the ions are too high in energy to be either excitable by
the incident neutron energies or to happen spontaneously as thermal excitations,
the transitions involve only the orientations of the spins (or the nuclear positions
as was treated in the previous sections). Thus, the frozen degrees of freedom can
be pulled out of the matrix element, giving

〈λf|ŴS|λi〉n = Fn(Q)〈λf|eiQRn Sn|λi〉, (C.5.32)

where Sn is the atomic spin vector. The Fourier transform of the normalized
density of the unpaired electrons belonging to a given atom

Fn(Q)=
∫

drρn(r)eiQr∫
drρn(r)

(C.5.33)

is known as the magnetic form factor of the atom. This gives the expression for
the double differential cross section

d2σ

dΩdEf
= (γr0)2

kf

ki

∑
α,β

(
δα,β−

QαQβ

|Q|2
) ∑

n,n′
F∗

n′ (Q)Fn(Q)

∑
λf,λi

pλi〈λi|e−iQRn′ Sα
n′ |λf〉〈λf|eiQRn Sβ

n|λi〉δ(ħω+Eλi −Eλf ) (C.5.34)

where Sα
n is the operator corresponding to the component α of the spin of atom n.

Due to the normalization in (C.5.33)

Fn(0)= 1. (C.5.35)

As the unpaired spin density for typical cases is essentially non-negative, for
Q 6= 0 it decays towards zero. Thus, its behaviour (and also the effect on the
intensity of magnetic scattering as we will see below) is perfectly analogous to the
conventional atomic form factor relevant for X-ray scattering, which is the Fourier
transform of the non-spin-resolved atomic electron density. However, while apart
from the very lightest elements the majority of an atom’s electrons is in deeper
shells and thus close to the nucleus, the unpaired spin density is due to partially
filled outer shells. As a consequence, the magnetic form factor decays much faster
with Q than the conventional form factor, so that magnetic scattering is only
visible in the innermost Brillouin zones. The magnetic form factor is in principle
transferable between different structures as long as the ionization state of the
respective atoms is the same. Parametrizations of the magnetic form factors of
the elements in the relevant ionization states are available in tabulated form.
This decay with Q can for instance be used to separate nuclear from magnetic
diffraction peaks.
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C.5.5 The magnetic case of van Hove theory

To repeat, the assumptions introduced in the previous section implied that the
degrees of freedom of a system accessible by neutron scattering, which previously
comprised only the nuclear positions, are augmented by the orientations of the
atomic spins. The nuclei have no accessible additional internal structure, and
analogously the atomic spins can only rigidly rotate their orientations.

Those two qualitatively different independent degrees of freedom give in the
full theory four kinds of scattering: When neither nuclear positions nor spin
orientations change, the scattering is elastic. When the spin configuration does not
change but the nuclear arrangement does, for instance by phonon excitation or de-
excitation, the scattering is inelastic in the phonon system. This kind of scattering
is known as magnetovibrational scattering. Both cases in principle correspond to
phenomena treated already in the nuclear case, but here the interaction is rather
mediated by the unpaired electron densities that are rigidly fixed to the nuclear
positions, giving possibilities to separate these contributions via polarization
analysis and via the effect of the orientation of the magnetization with respect to
the wavevector transfer. Further, there is the converse case where the scattering
is elastic with respect to the nuclear positions but inelastic with respect to the spin
orientations, and finally the case where both nuclear position and spin orientation
states change.

Here the third case shall be considered in more detail, where the nuclear con-
figuration is frozen but the spin configuration changes. We can expect this to
formally parallel the case of inelastic non-magnetic scattering, where it turned out
that the double differential cross section is essentially the dynamical structure
factor S(Q,ω), which has in the classical view an immediate interpretation as
the Fourier transform of correlation functions. Indeed, for a system composed of
magnetically equivalent atoms considered for simplicity the double differential
cross section can be written as

d2σ

dΩdEf
= (γr0)2

kf

ki
F2(Q)e−2W(Q) ∑

α,β

(
δα,β−

QαQβ

|Q|2
)
Sα,β(Q,ω) (C.5.36)

with the magnetic dynamical structure factor

Sα,β(Q,ω)= ∑
n,n′

eiQ(Rn−Rn′ )
∑
λf,λi

pλi〈λi|Sα
n′ |λf〉〈λf|Sβ

n|λi〉δ(ħω+Eλi−Eλf ). (C.5.37)

As the nuclear positions Rn are assumed to be not affected by the scattering event,
they are just classical quantities and can be pulled out of the matrix elements.
The Debye-Waller factor e−2W(Q) introduced here takes into account the random
displacements of the nuclei from their ideal positions and will be discussed in
more detail later.

By an approach analogous to the one taken in Sect. C.3.1 the magnetic dynamical
structure factor can be transformed to

Sα,β(Q,ω)= 1
2πħN

∑
n,n′

eiQ(Rn−Rn′ )
∫

dt
〈
Sα

n′ (0)Sβ
n(t)

〉
e−iωt, (C.5.38)

where
〈
Sα

n′ (0)Sβ
n(t)

〉
is essentially the van Hove pair-correlation function for the

components of the spins. It has the same qualitative features as the nuclear
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analogon, specifically it is accessible to a classical interpretation only under
qualifications, but in this case it gives the probability for the spin of atom n to
point along β at time t′+ t if the spin of atom n′ was pointing along α at time t′.

C.5.6 The fluctuation-dissipation theorem for magnetism

In general, a fluctuation-dissipation theorem relates the first-order response
to some perturbation of a statistical system in equilibrium to the equilibrium
fluctuations of the system in the corresponding degrees of freedom. Specifically
for the case of neutron scattering on magnetic systems, it reads

Sα,β(Q,ω)= ħ
π

1
1−e−ħω/kBT Im

(
χα,β(Q,ω)

)
. (C.5.39)

χα,β(Q,ω) is the generalized magnetic susceptibility tensor defined by how the
magnetization of a sample reacts to frequency- and wavevector-dependent mag-
netic field in first order (that is, for low fields)

Mα(Q,ω)= χα,β(Q,ω)Hβ(Q,ω). (C.5.40)

The neutron can be understood as establishing this magnetic field due to its
magnetic moment and at the same time detecting its response, all in the regime
of validity of first-order perturbations as long as the conditions of kinematic
scattering are fulfilled. That is, with neutron scattering not only the intrinsic
frequencies of atomic spins are accessible (where with macroscopic magnetization
measurements only much longer timescales are accessible, corresponding rather
to the dynamics of magnetic domains) or the spatial scale of the moments is
accessible (which is completely unfeasible with macroscopic measurements), but
all this is achieved in the perfect low-field limit, which also is experimentally
not achievable with macroscopic methods. Due to these aspects, the potential
of neutron scattering for studying magnetism on its fundamental scale is and
probably will remain unattainable for other experimenal methods.
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Chapter D

Applications

The subject of this final chapter will be the application of both the theoretical
results as well as the experimental techniques presented in the previous chapters
to probe the properties of specific physical systems, predominantly in the solid
state.

D.1 Diffraction

Diffraction, which implies recording the scattered neutron intensity only with
respect to the outgoing direction (and the time of flight in the case of a pulsed
incident beam) without sensitivity to possible energy transfers at the sample (and
typically interpreting the data only in terms of elastic scattering, assuming all
inelastic intensity to contribute only to the background), is concerned with the
structural arrangements of the scatterers in the sample. Often, these scatterers
are in fact single atoms, but in the case of small-angle scattering larger scales are
probed.

D.1.1 Single-crystal diffraction

As was derived in Sect. C.1.4, the defining feature of elastic scattering from single
crystals is the appearance of sharp peaks of intensity as a function of wavevector
transfer Q, the Bragg peaks.1 Their positions coincide with the positions of the
reciprocal lattice.

However, when first mounting a single crystal in a general orientation in a
monochromatic beam, in the general case there will be no scattered intensity
to be detected. A very helpful device for understanding this issue is given by
the so-called Ewald sphere: For a given incident beam direction and energy, the
incident wavevector ki is fixed. In the case of elastic scattering, also the length

1We will leave the discussion of studies of the diffuse intensity for later.
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of the outgoing wavevector is fixed, with the direction of detection corresponding
to the orientation of kf. This results in the accessible wavevector transfers Q
lying on a sphere of radius |ki|, the above-mentioned Ewald sphere. Positions
on a two-dimensional detector thus directly correspond to points on the Ewald
sphere in reciprocal space. Note that this sphere is not centered around the
origin of reciprocal space but rather around ki, with the origin actually lying
on the Ewald sphere, corresponding to vanishing wavevector transfer for the
case of forward scattering. For a general orientation of the single-crystalline
sample not a single one of the finitely many accessible Bragg peaks (those with
|G| ≤ Qmax = 2|ki|, which is realized for backscattering) will lie on the Ewald
sphere, being a two-dimensional manifold in three-dimensional space.

Note that in the actual experimental case, the Ewald sphere is best imagined to
be somewhat diffuse. This is due, first, to a finite monochromaticity of the incident
beam, giving a sheaf of spheres with different radii (and also centers, lined up
along the incident beam), but still all coinciding at the origin, and, second, a finite
divergence of the incident beam, leading to a sheaf of spheres with same radii but
centers distributed perpendicular to the incident beam. Thus, intensity will be
recorded also when a peak is some distance off the ideal Ewald sphere.

A classical method of single-crystal diffraction is the rotating crystal method. In
the original implementation a photographic film functions as a two-dimensional
integrating detector, covering a given part of the Ewald sphere. When now
the sample and thus the crystal lattice is rotated in real space, the reciprocal
lattice rotates along, with the reciprocal lattice vectors moving along circular
paths around the rotation axis (typically oriented vertically, perpendicular to the
incident beam). Every time a reciprocal lattice vector passes through the Ewald
sphere, the diffraction condition is fulfilled and intensity is recorded on the film.
After a full rotation, a characteristic pattern results on the detecting film, allowing
to determine the crystal symmetry as well as the lattice constants.

In addition, such a measurement yields also quite accurate peak strengths, defined
as the three-dimensional integral over the immediate vicinity of the reciprocal
lattice vector in reciprocal space (that is, covering all intensity even for peaks
with finite widths). For the proportionality constant between measured intensity
and inherent peak strengths here already geometric effects appear that are more
prominently known from the Lorentz factor of powder diffraction, for which a qual-
itative expression will be derived in Sect. D.1.3. Specifically, the intensity value at
a given point on the film is proportional to the average value over the intensity
in three-dimensional reciprocal space along the circular path corresponding to
this detector position. Assuming that only one peak contributes at this detector
position, for a given peak strength the detected intensity is thus the higher the
shorter the path length is.

The second factor concerns the angle between the Ewald sphere and the path at
the crossing point. If this angle is large, the peak crossing happens fast, giving a
lower intensity than for small crossing angles. This also affects the achievable
resolution: for a given peak width in three-dimensional space, a low-angle crossing
will lead to a broad signal on the detector. Thus, for given incident collimations
and detector resolutions the intrinsic peak width can be optimally resolved for
low-angle crossings, that is, near back-scattering.
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With today’s detectors with immediate read-out, rocking scans can be performed,
giving access to information beyond the rotating crystal method. Here the crystal
is oriented so that the diffraction condition is nearly fulfilled, and then it is slowly
rotated through the diffraction condition. With a two-dimensional detector, the
resulting frames correspond to successive parallel cuts through three-dimensional
reciprocal space, giving the complete three-dimensional shape of the considered
peak.

As mentioned above, with single-crystal diffraction the crystal structure of a
system as well as the intensity of the different peaks can be studied. However,
the former is a very fundamental question and thus typically needs to be solved
before any single crystals are available, and also for studying the latter problem
powder diffraction is a very successive method, as will be discussed below. The
main selling point of single-cystal diffraction is thus its ability to study the full
three-dimensional peak shapes. The two principal aspects that are accessible in
this way are on the one hand the mosaicity, that is, a distribution of local crystal
orientations in a nominal single crystal due to small-angle grain boundaries, and
on the other hand finite peak widths with specifically anisotropic peak shapes due
to lattice defects and the associated strain fields.

D.1.2 Diffraction on polycrystals

A sample of solid matter prepared without following any special protocols, in the
simplest case obtained by casting a melt, will in general be in the polycrystalline
state. That is, while on the microscopic scale it has the crystalline structure
corresponding to its stable (or possibly meta-stable) phase, the specific orientation
of the crystal lattice does not extend through the whole piece of material as in
the case of a single crystal. Rather, a polycrystal has a microstructure of grains,
corresponding to crystallites that are rotated with respect to each other.

On the one hand, diffraction on such a polycrystal can be done as substitute
for powder diffraction (see below) when powders of the sample in the desired
state cannot be obtained, for instance due to too high ductility or reactivity with
the atmosphere. However, the effects of the polycrystalline structure on the
diffraction pattern as discussed in the following can have a significant impact on
the interpretation, thus care has to be taken with this approach.

The main case for performing diffraction measurements on polycrystals thus lies
in engineering, where effects due to the microstructure of samples prepared in
the same way as in the actual industrial application can be studied. While, as
is often the case, X-ray and neutron scattering can in principle probe the same
aspects of the system, here using neutrons has a significant advantage, as their
large penetration length allows often to study mechanical parts in their actual
shape, while for X-ray scattering sections have to be prepared, which can affect
the properties to be studied, specifically for the case of residual stress analysis.

Compared to the case of single-crystal diffraction, the concept of the Ewald sphere
holds without modification. However, when a number of crystallite grains are in
the beam, each of those will lead to its own reciprocal lattice of diffraction peaks,
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with weights that vary according to the grain volume. With typical resolutions
between 10−2 and 10−3, the probability of a given reflection to cut through the
Ewald sphere varies on the same order of magnitude. Thus, as soon as a suffi-
cient number of crystallites is in the illuminated volume, there will be diffracted
intensity for any orientation of the sample.

The diffracted intensity will form the so-called Debye-Scherrer rings on the de-
tector: as for arbitrary orientation of the crystallites the length of the reciprocal
lattice vectors is still fixed, so is the length of Q and thus the scattering angle. A
given reflection thus corresponds to a Debye-Scherrer cone of outgoing intensity
with some opening angle, and the intersection with the Ewald sphere gives rings
of intensity on a flat detector. For not too fine microstructures, these rings will
display an appreciable graininess, where each grain of intensity on the detector
corresponds to an actual crystallite grain that fulfills the diffraction condition for
the specific kf. Thus, for the evaluation of such data there is a contribution to the
statistical uncertainty in addition to the conventional neutron counting statistics
to consider, corresponding to the limited number of grains fulfilling the diffraction
condition. When statistically better-defined Debye-Scherrer ring profiles are desir-
able, the polycrystal can in addition be rotated during the measurement, so that
more grains contribute to the recorded intensity (but see the following discussion
for orientational dependence even in the case of a polycrystal).

Apart from instrumental effects such as finite collimation or monochromatiza-
tion/energy resolution, there are two principal effects that give rise to finite widths
of the Debye-Scherrer rings. On the one hand, this can be due to finite sizes of
the diffracting grains, called size broadening. Qualitatively, this can be easily
understood: when for a given grain and a given reflection N lattice planes are
contributing to the diffracted intensity, the reflection will have a relative width
in reciprocal space on the order of 1/N, as for this deviation the uppermost and
lowermost planes will get out of phase. Translated into an angular width for
monochromatic radiation, a quantitative expression is given by the Scherrer
equation

L = Kλ
B(2θ)cos(2θ/2)

(D.1.1)

where B is the angular full width at half maximum of the diffraction peak (in
radians), 2θ is the scattering angle, and L is the corresponding crystallite size.
The numerical value of the dimensionless constant K depends on the assumed
grain morphology and the associated definition of the grain size, typically and has
a value of K = 0.89 for a flat crystallite platelet oriented perpendicular to Q.

Further, also locally varying lattice constants will give rise to finite intrinsic peak
widths. These can be due to chemical inhomogeneities such as due to Seigerung
effects in casting without subsequent solution annealings, or intrinsic strains,
where the phenomenon is known as strain broadening. Of course, in this case
a given distribution relative local strains means a corresponding distribution of
local lattice parameters, and thus a corresponding relative width of the peak in
reciprocal space. Given the elasticity tensor, the intrinsic strains can be converted
to residual stresses, that is, the stresses that remain even for no external load
on the sample. Size and strain broadening can be separated by their variation
with the order of the reflection: for size broadening, the absolute width of a peak
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is independent of |Q| (and the variation according to the Scherrer equation is just
due to the correspondence between scattering angle and wavevector transfer),
while strain broadening gives constant relative peak widths.

Finally, polycrystals will typically display texture, which means preferred orienta-
tions of the crystallite grains. This can result both from directional solidification
in standard casting sample preparation as well as from further sample treatments,
which in general are not isotropic, for instance rolling or cutting. It is quantified
in the so-called pole figures, which are density plots of the intensity of given
diffraction peaks as function of direction. The distributions of two non-parallel
peaks are necessary for a full specification of the three-dimensional orientation
distribution. Texture is the main reason why normally powder diffraction as
discussed below is the preferred method for determining structural properties of
unperturbed systems.

Thus, diffraction on polycrystals is a very attractive method for engineering
applications as it allows to determine preferred grain orientations as well as
residual stresses, which are hard to obtain quantitatively by microscopy methods.
By using collimators on the incident and outgoing paths, this can even be done non-
destructively with three-dimensional spatial resolution, which is known under
the term strain scanning.

D.1.3 Powder diffraction

Powder diffraction is closely related to diffraction from a polycrystalline sample.
However, assuming that the powder grains either grow themselves or have been
milled to roughly spheroid shapes (that is, that they have neither plate- nor
needle-like morphology), they will be oriented perfectly randomly. Further, as
gravitation can be neglected in this respect, they will also be in a stress-free state
on the scale of the grains (however, on smaller scales there can be stresses, such
as due to dislocations within the grains). Thus, the main effects that have been of
engineering interest in the polycrystalline case discussed above do not apply here,
and ground-state aspects of the system can be studied more directly.

Due to the absence of preferred orientations, the fundamental experimental re-
sults are one-dimensional diffraction patterns, to which the experimental data
are reduced beforehand (possibly to sets of spectra with different instrumental
resolutions for data taken with area detectors or in time-of-flight mode). Within
these patterns, the interest lies on the diffraction peaks, specifically their posi-
tions, intensities (peak area) and widths (in contrast, non-trivial peak shapes
are typically due to instrumental resolution effects as opposed to intrinsic ef-
fects), while the background due to incoherent and inelastic scattering is typically
phenomenologically modelled and subtracted. For the case of simple crystal struc-
tures and reasonable resolutions, the peaks will be clearly separated, and so their
intensities and widths can be fitted independently and modelled successively.
For more complicated structures with large real-space lattice constants and low
crystalline symmetries, the number of peaks in the diffraction pattern increases
greatly, which can prohibit this approach from being followed due to peak overlap.
The solution to this problem in the form of whole-pattern refinement will be given
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below.

Assuming the kinematical theory of diffraction to be valid and neglecting absorp-
tion, apart from the structure factor Shkl the strength of a given peak will depend
essentially on three further factors

Ihkl = Mhkl D(Q) L(2θ) |Shkl |2. (D.1.2)

The most obvious one is the multiplicity factor Mhkl . For instance in an fcc system,
there are 24 reflections of the kind {3,1,1} and 8 of the kind {2,2,2} arranged over
three-dimensional reciprocal space. The intensity in the diffractogram for a given
wavevector transfer is proportional to the average over the corresponding spheres
in reciprocal space, so it scales with Mhkl , the number of equivalent reflections.

Next, there is the Lorentz factor L that depends only on the scattering angle 2θ. It
is due to the geometric aspects of the scattering process that have been discussed
qualitatively already in Sect. D.1.1. Specifically, as the intensity detected for a
given scattering angle is the average over the corresponding sphere in reciprocal
space, the surface of which scales with Q2 ∝ sin(2θ/2)2, the intensity decreases
with the scattering angle with sin(2θ/2)−2, all else being equal (this effect can also
be understood as the probability of a given grain in arbitrary orientation fulfilling
the diffraction condition for a given reflection). Further, there is no linear relation
between wavevector transfer and scattering angle, but rather

Q = 2Q0 sin
(

2θ
2

)
. (D.1.3)

Therefore, for fixed wavelength (and thus Q0) we have

dQ ∝ cos(2θ/2)d2θ. (D.1.4)

This means that in the vicinity of backscattering the wavevector transfer does not
vary much with scattering angle, so these regions in reciprocal space are sampled
with correspondingly more weight. Summarizing these two geometrical effects
into the Lorentz factor gives

L(2θ)∝ 1
sin(2θ/2)2 cos(2θ/2)

∝ 1
sin(2θ)sin(2θ/2)

. (D.1.5)

The third factor is the Debye-Waller factor D(Q). This is a function that decays
monotonously from 1 to 0 as Q increases and is due to deviations of the atoms
from their ideal positions, which leads to phase shifts and thus destructive inter-
ferences. Such deviations necessarily results from zero-point motion as well as
phononic excitations with temperature. Due to the latter effect, the decay with Q
is more drastic at higher temperatures. Further, also static displacements due
to chemical disorder can contribute. The displacements can be modelled as a
spatial distribution of the nuclear positions around the ideal sites, from which the
Debye-Waller factor results just as the magnetic form-factor for neutrons or the
atomic form-factor for X-rays. The dynamic contributions are due to phonons, the
amplitudes of which do not interact in the harmonic approximation. Thus, by the
central limit theorem the corresponding probability density is a three-dimensional
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Gaussian distribution, which in the case of cubic symmetry is defined by just one
parameter

ρ(u)∝ e−|u|
2/2σ2

. (D.1.6)

The scattering amplitude is proportional to the Fourier transform of this distribu-
tion evaluated at the respective Q, and the intensity its absolute square. Thus,
for a cubic Bravais lattice system we obtain

D(Q)= e−2W(|Q|) = e−|Q|2〈u2〉/3. (D.1.7)

Thermal values of
√
〈u2〉 can reach a few tens of Ångströms, so that an appreciable

decrease of peak strengths is observed already over the first few reflections,
and static contributions can increase this even further. For structures with
inequivalent sublattices, each sublattice can in principle have its own distribution
of displacements. In this case, Eq. (D.1.2) is not strictly applicable, and the effect
has rather to be modelled within the structure factor, as it is the case with atomic
form factors.

As noted above, the obvious procedure of first determining peak positions and
intensities and in a second step finding a structure with internal parameters that
reproduces this list of values, which historically seemed like the only possible
approach due to the limited computing capacities, becomes impossible to do un-
ambiguously due to peak overlap. in 1969, Hugo Rietveld proposed to abandon
the above-sketched two-step procedure in favour of a direct modelling of the full
diffraction pattern by a set of parameters describing both the structure of the
sample as well as the behaviour of the instrument (such as instrument resolution
functions). In the meantime, this has become one of the most productive methods
in the whole of physics. At the time of its introduction, this was a quite demand-
ing method in terms of computing power, and its successful execution inspired
admiration and lead to it being considered the gold standard of powder diffrac-
tion data analysis. However, with today’s increased computing capacities such
seeming brute-force direct modelling approaches with their obvious advantages
are generally becoming more common-place, and the singularity of the Rietveld
method is gradually reducing. Note that this method specifically is concerned with
refining, that is, a continuous optimization of the structural parameters to fit the
data. In contrast, the determination of the unit cell and space group is the domain
of crystallography, a whole scientific discipline outside of physics, and structure
solution, that is, finding a plausible real-space model within the constraints of the
unit cell and space group, is rather a problem of chemistry.

D.1.4 Diffuse scattering

How the diffuse scattering (the intensity between the Bragg peaks) from a single
crystal is connected to correlations in the arrangements of chemically inequiva-
lent atoms was already treated in Sect. C.1.6. Here additional aspects shall be
commented on.

In C.1.6, the diffuse scattered intensity was related to a correlation function.
Also the differential cross sections that were derived in Sect. C.3 have always
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been assumed to be directly accessible in a scattering experiment. However, this
corresponds to equating the actually measured intensities with their expected
value, and it is not trivial to see why this should be valid.

Indeed, in the ideal case, where the incident radiation is assumed to be perfectly
monochromatic and non-divergent, and the sample is for simplicity assumed
to be a static classical system, the scattered intensity is strictly the absolute
square of the Fourier transform of the scattering length density evaluated at the
corresponding Q. Chemical disorder in the sample will give random interferences,
and so the intensity in the diffuse regime will be a random variable (with an
exponential distribution, being the absolute square of the amplitude, which shows
a normal distribution due to the central limit theorem) with an expected value
that is related to the static pair-distribution function.

The point is now that the scale of these fluctuations in scattered intensity over
reciprocal space is the inverse of the dimensions of the illuminated volume.2

Assuming the scattering to sample atomic scales, the relative size of these fluc-
tuations therefore goes with 1/N, the typical number of interfering atoms per
dimensions, which for neutrons is about 108. Thus it transpires that the scat-
tering experiment is self-averaging in the sense that experimentally realizable
monochromatizations and divergences correspond to distributions of wavevector
transfers sampled at a given detector position, which washes out the fluctuations.

Only the high brilliance of synchrotron beams allows to collimate and monochrom-
atize the beam to a point (together with the smaller sample dimensions in X-ray
scattering) where the ideal situation is approached and the fluctuations become
visible. This is then called coherent illumination (which should not be confused
with the distinction between coherent and incoherent scattering in the case of
neutrons), where the actual sample microstates are accessible. The observed
graininess of the diffuse intensity is called speckles, and is more familiar from the
optical regime, where lasers provide coherent illumination with much less effort.

A variation of the diffuse scattering over reciprocal space corresponds to a pref-
erence for specific local configurations of chemically distinct atoms due to in-
teractions, which is known as short-range order. On the pair level, such local
correlations are quantified by the Warren-Cowley short-range order parameters.
Consider a binary system with composition c (i.e. the concentration of element A
is c and the concentration of element B is 1− c), for simplicity on a Bravais lattice.
For a given lattice vector r let PA,B

r be the probability for site x to be occupied by
A and site x+r by B, averaged over all x (i.e. it is half the probability for a pair of
sites related by a vector r to be occupied by distinct elements). The short-range
order parameters are then given by

αr = 1− PA,B
r

c(1− c)
. (D.1.8)

Note that in the absence of correlations (that is for very high temperature or large
r) PA,B

r = c(1− c), therefore αr = 0 in this case. Negative values of αr correspond
to negative correlations, that is preferred unlike pairs, while positive values
correspond to like pairs. In the extreme case where an atom A at x implies also

2Note that this equally pertains to the intrinsic width of Bragg peaks in the kinematic theory.
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an atom A at x+r (equivalently for B), αr equals one (which is trivially fulfilled
for r= 0).

As was discussed with respect to the static approximation in Sect. C.4.3, the fact
that a neutron can experience significant energy transfers at the sample compared
to thermal neutron energies would lead to neutrons of different Q being detected
at a given detector position in the diffuse regime without energy analysis. Thus,
energy analysis has to be done for meaningful studies of the diffuse intensity, so
that only the elastic intensity is detected. In the kinematical theory, the elastic
part of the intensity is the Fourier transform of the pair-distribution function of
the time-averaged configuration. On the other hand, for X-ray scattering energy
transfers do not appreciably change the wavevector transfer, and so no energy
analysis is done for studies of the diffuse intensity (that is, no analysis with
respect to phonon or magnon transitions — Compton scattering or fluorescence
photons are typically discriminated against if the intrinsic energy resolution of
the detector allows it). As a consequence, in this case the Fourier transform of
the pair-distribution function corresponding to instantaneous configurations is
probed, including all dynamic displacements in the positions.

D.1.5 Small-angle scattering

Small-angle scattering is concerned with length scales on the order of nanometers
to hundreds of nanometers. While there are solid-state crystals which lattice
constants in this regime (silver behenate with c = 58.380Å is an example, being
a popular calibration sample for small-angle instruments), and also for instance
some micelles can order in a regular arrangement and give rise to diffraction
peaks in this regime, small-angle scattering in the proper sense is concerned with
non-regular arrangements that give rise to a smoothly varying, typically isotropic
scattering signal around the forward direction. In any case, on these scales the
atomicity of matter is not resolvable and modelling is done in terms of continuous
scattering length densities.

The fact that the incident beam has necessarily some divergence limits the acces-
sible Q towards small values, and the contribution due to the tails of the direct
beam has to be known accurately to recover the scattered contribution from the
detected signal. This pertains both to measurements of the beam profile with
empty sample holders as well as the transmission of the sample. Further, with
the constructive interference of potentially large scattering entities in real space
at small Q and the fact that the scattered intensity is the absolute square of the
amplitude and thus the Fourier transform of the scatterer density, the problem of
multiple scattering is more severe for small-angle scattering than for wide-angle
scattering. In other words, the probability for a given neutron or photon to experi-
ence a scattering event by a small angle in a sample with spatial inhomogeneities
on the corresponding scale is much larger than the probability for scattering
events by larger angles. Thus, what with the resolution of wide-angle experiments
still looks like the direct beam can actually have already experienced a number of
small-angle scattering events.

A typical case of small-angle scattering is to study the shape of particles in
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suspension. Specifically for small-angle neutron scattering, the technique of
contrast matching is very potent. What it means is that the scattering length
density of the solvent can be adjusted by isotope substitution without changing
the chemical behaviour, where deuteration, that is substituting 1H by 2D, is the
dominating case — its converse is called protonation. For instance when the
particles have a core-shell structure, by choosing the scattering length density of
the solvent equal to one of the parts, the scattered signal is exclusively due to the
other part.

For back-of-the-envelope calculations, the so-called small-angle approximation is
often used, which consists in equating the sine with its argument (measured in
radians), giving

|Q| = 2|Q0|sin(2θ/2)≈ |Q0|2θ (D.1.9)

with an error in third order of 2θ. Also, the Ewald sphere can be assumed to be
flat with the same relative accuracy, but for the typical case of isotropical systems
the direction of Q makes no difference anyway.

For the above-mentioned case of the system consisting of well-defined particles
with some distribution of shapes and sizes that are arranged in some more or
less random way, the resulting small-angle scattering signal can conceptually be
understood as the product of a particle form factor, which is only due to the size
and shape distribution of the particles, and an interparticle structure factor, which
quantifies the correlations in the particles’ positions. Specifically for concentrated
systems, the structure factor will show an increase from small Q up to a maximum,
which corresponds in some sense to the most frequent nearest-neighbour distances,
and which is due to the particles not being able to intersect. As will be discussed
below, on these scales the particle form factor is flat, while it decays at higher Q.
Thus, the small-angle signal often has the form of a ring of intensity.

The most simple shape to consider is a sphere. The corresponding scattering
intensity, that is, the absolute square of its Fourier transform, can easily be
calculated in spherical coordinates and evaluates as

I(Q)= ρ2V 2
(3

(
sin(QR)−QR cos(QR)

)
(QR)3

)2

︸ ︷︷ ︸
P(Q)

, (D.1.10)

where ρ is the contrast in scattering length density between the particle and the
solvent, V is the particle volume, R the radius, and P(Q) is the dimensionless
form factor (with P(0)= 1). P(Q) has characteristic zeros close to QR =π(n+1/2)
for n ≥ 1. In reality, the particles will have some polydispersity, that is, some
distribution of radii, which will smoothen the distribution and lift the zeros, but,
as evidenced by the plot in Fig. D.1, at a relative standard deviation of 8% still
the first four minima are clearly discernible.

P(Q) is a function that is positive everywhere (apart from the artificial example
of a perfect sphere) and decays outwards (see below), so for general P(Q) we can
write

P(Q)= eF(Q), (D.1.11)
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Figure D.1: Illustration of models for small-angle scattering curves. Dotted:
spherical particle with unity radius, solid: spherical particles with Gaussian
distribution of radii (σ/R = 0.08), dashed lines: Guinier model (parabola at small
x) and Porod law (power-law decay at large x).

where F(0) = 0, F(Q) →−∞ for Q →∞, and F(Q) is symmetric with respect to
Q as the same applies for P(Q). Assuming P(Q) to be analytic, we can expand
F(Q) as a Taylor series where due to symmetry only even orders appear. This is
the technique of cumulant expansion, specifically we have for the second-order
coefficient

F2 =−(〈z2〉−〈z〉2)
, (D.1.12)

the normalized central second moment of the scattering length density along some
direction z. Performing the orientation average explicitly, the radius of gyration
can be defined

R2
g =

∫
drρ(r)r2∫
drρ(r)

(D.1.13)

assuming the center of mass of the scattering length density to be at the origin,
which allows to write

P(Q)= e−R2
gQ2/3. (D.1.14)

This expression corresponds to the Guinier approximation and is valid for not too
large Q (Fig. D.1). For the special case of spheres, the radius of gyration is related
to the actual radius according to

R2
g = 3

5
R2. (D.1.15)

When analyzing scattering signals for obtaining the radius of gyration of the
particles, the effect of the interparticle structure factor has to be considered.

Apart from the regularly arranged zeros, Eq. (D.1.10) shows a decay with Q−4

for large Q. Such a behaviour is not specific to spherical particles, but holds
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whenever the scattering volume is separated by a sharp interface into regions
of two different scattering length densities (termed two phases from now on).3

This is the so-called Porod law, which is also illustrated in Fig. D.1. In this case,
the pair-correlation function for small separations r decays linearly with |r| with
a decay constant equal to the interface area density (that is, the probability for
two random points to be in different phases is for small separations and well-
defined phase boundaries just the probability for a phase boundary to be found
anywhere on the connecting line, which is the distance times the interface area
per volume). The Fourier transform over the resulting cusp at r= 0 can be done
directly in spherical coordinates, indeed giving a contribution proportional to Q−4

from the lower integration boundary, where the upper boundary drops out with an
argument as given in Sect. C.2.1. In a quantitative calculation, the proportionality
factor gives a direct handle on the interface area density. The transition between
the Guinier and the Porod regime is where Q becomes larger than the typical
radius of curvature of the interface.

D.1.6 Diffraction on magnetic structures

The study of magnetic structures, that is, how the spins sitting on the distinct
atoms are arranged,4 is one of the most important applications of neutron diffrac-
tion. Here the different cases will be presented in a qualitative way. The relevant
principles as derived in Sects. C.5 and C.3.2 common to all these cases are the
decay of all magnetic scattering towards large Q with the magnetic form factor, the
sensitivity to magnetization only perpendicular to Q, and for polarized neutron
scattering the neutron spin flipping due to sample magnetizations perpendicular
to the neutron polarization axis.

The easiest case to consider is a paramagnet. In the limit of infinite temperatures,
the atomic spins are perfectly uncorrelated. Thus, the case is equivalent to
uncorrelated nuclear spins, which was found in Sect. C.3.2 to give incoherent
scattering. Determining this scattering contribution quantitatively allows to
conclude on the sizes of the fluctuating spins. At lower temperatures, the atomic
spins will start to display correlations. As a consequence, the previously perfectly
flat incoherent scattering (apart from the decay with Q due to the magnetic form
factor) will evolve modulations. Qualitatively, the interpretation of this magnetic
diffuse scattering is equivalent to nuclear diffuse scattering, specifically a parallel
ordering tendency will give higher intensity around the Bragg peaks (as for
nuclear clustering), while an antiparallel tendency will give intensity between the
peaks (as for nuclear ordering). Of course, as the spin configurations are dynamic,
the scattering will be subject to energy transfers, specifically it constitutes a case
of quasi-elastic scattering with no purely elastic peak as will be discussed in Sect.
D.2, because the time-averaged magnetic scattering length is zero.

At still lower temperatures, a paramagnet will show a phase transition towards
an ordered state. If parallel ordering tendencies are dominating, a ferromagnet
results. At a sufficient external field, when the sample is fully magnetized, all

3Also Eq. (C.2.26) can be understood as an instance of this fact.
4For reasons of economy of prose, only spin magnetization will be explicitly considered, but note

that the case for orbital magnetization is largely equivalent as was pointed out in Sect. C.5.
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spins will be pointing in the same direction. Thus, for given Q, the nuclear
scattering length of each atom will be modified due to the interaction of the
neutrons with the atomic spin, which is equal for all atoms. As a consequence, the
Bragg peak intensities will change as well compared to the non-magnetic case,
while the magnetic diffuse scattering will vanish. The magnetic contribution can
be determined by varying the angle between the external field and Q. On the
other hand, under zero external field a soft magnet will have a vanishing net
magnetization. In this case, there will still be a magnetic contribution to the peak
intensities, but its effect will be comparatively small. To be precise, the finite
correlation lengths in this case due to Weiss’ domains will lead to the magnetic
contributions being slightly broadened compared to the nuclear peaks. This
pertains also to the (0,0,0)-peak, so that this effect can be studied as small-angle
scattering.

In the converse case of dominating antiparallel interactions between the spins,
an antiferromagnet will result. Typically (but not always), this will result in an
enlargement of the unit cell and thus in the appearance of additional peaks. These
peaks are purely of magnetic origin, and thus can be easily identified by their
decay with the magnetic form factor.

Actually, ferro- and antiferromagnets are just special cases of spin spiral struc-
tures: such arrangements are described by a magnetic ordering wavevector q and
a (possibly complex) amplitude µ0 so that the magnetic moment of atom i is given
by

µi =Re
(
µ0eiqRi

)
, (D.1.16)

where Ri is its position. A ferromagnet has q= 0, while for instance q=π(1,1,1)
gives an antiferromagnet on the simple cubic lattice. A pure modulation is given
if all entries of µ0 have the same complex phase angle, while a spin spiral in the
proper sense of the word (where all spins have the same length but rotate in space)
results when Re

(
µ0)

and Im
(
µ0)

have the same length and are perpendicular.
The special cases when the µi turn within the plane perpendicular to q (that is,
when Re

(
µ0)

and Im
(
µ0)

are perpendicular to q) is called a helical spin spiral,
and the case of q lying in the plane of rotation is called cycloidal. Note that the
most general long-range ordered spin configurations can need a number of pairs
of ordering wavevectors and amplitudes for their description. An example would
be a cone spiral, which is a spin helix with an additional constant contribution
parallel to q.

Spin spirals can be classified into having commensurate modulations, where
q is an integer fraction of some reciprocal lattice vector, and incommensurate
modulations. In the latter case, a given local configuration never repeats along q
in the strict sense. Practically, high-index commensurate and incommensurate
modulations cannot be distinguished, but it is expected that due to spin-orbit
coupling, which leads to preferred orientations of single spins with respect to
the lattice, incommensurate modulations eventually lock in to some high-index
commensurate modulation.

The signature of spin spirals in neutron diffraction is the appearance of magnetic
satellite peaks at positions ±q relative to the nuclear peaks.
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As noted already above, magnetic peaks can be identified indirectly by their
decay with Q according to the magnetic form factor, by their disappearance at the
magnetic phase transition temperature, and by the effect of turning the sample
magnetization with respect to Q. However, the most detailed information on the
magnetic structure can be gained by controlling and analyzing the neutrons’ spin
before and after the scattering. The corresponding methods are called uniaxial
polarization analysis, when only the spin quantization along one axis is considered,
and spherical or 3D polarimetry in the general case.

A quantitative statement of the pertinent theories is too complicated to give in de-
tail here, specifically for the three-dimensional case (which is also experimentally
a very demanding method), thus only the results of Sect. C.3.2 for the uniaxial
case will be quoted here: scattering on magnetization components parallel to the
neutron polarization axis conserves the neutron spin, while the perpendicular
components give spin-flip scattering. A main quantity to study here is the flipping
ratio, that is, the ratio between spin-flip and non-spin-flip intensities, which has
the advantage that it is independent, e.g., of Debye-Waller factors or magnetic
form factors. For instance, uniaxial polarization analysis can be used to separate
paramagnetic incoherent from nuclear spin incoherent scattering, as for the for-
mer the intensities in the spin channels vary in a known way with the orientation
of the polarization axis to Q, while the latter is insensitive to it.

D.2 Quasi-elastic scattering

Quasi-elastic scattering has two meanings: used in a quantitative sense, it just
denotes the scattering of intensity at small energy transfers, such as below 1meV.
However, used as a qualitative distinction (which will be followed here) it denotes
situations where the elastic peak itself is broadened in energy, as opposed to the
case where energy transfers well separated from the elastic line appear, such as
for instance for the phonon peaks to be discussed below under inelastic scattering.

Quasi-elastic scattering is observed whenever the self- or pair-correlation function
becomes flat at infinite times, that is, when the system does not stay within
some bounded region in phase space, which corresponds to diffusive dynamics.
This applies for instance to liquids, which have no elastic peak as discussed in
Sect. C.4.3, for soft condensed matter, which are a major case for quasi-elastic
neutron scattering due to the strong incoherent scattering from hydrogen, or for
paramagnetic fluctuations.

Here specifically solid-state diffusion shall be considered. For being accessible
to neutron scattering, the dynamics have to be comparatively fast (so as to give
appreciable energy transfers). This is realized for intermetallic systems, but most
prominently again for the interstitial diffusion of hydrogen in metals.

For diffusion in a lattice (for simplicity assumed to be a Bravais lattice here), the
pertinent correlation function (for hydrogen with its predominantly incoherent
scattering this is the self-correlation function) in the classical approximation
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fulfills the partial differential-difference equation

∂

∂t
G(r, t)=∑

∆r
ν∆r

(
G(r−∆r, t)−G(r, t)

)
, (D.2.1)

where ν∆r denotes the jump rate for jumps over distance vectors ∆r. For the
intermediate scattering function this implies

∂

∂t
I(Q, t)=−I(Q, t)Γ(Q), (D.2.2)

where Γ(Q) is the negative Fourier transform of the diffusion kernel

K(r)=∑
∆r
ν∆r

(
δ(r−∆r)−δ(r)

)
, (D.2.3)

that is

Γ(Q)=∑
∆r
ν∆r

(
eiQ∆r −1

)
. (D.2.4)

Γ(Q) is called the linewidth. This becomes clear by solving the intermediate
scattering function as

I(Q, t)= I(Q,0)e−Γ(Q)t, (D.2.5)

with I(Q,0)= 1 specifically for incoherent scattering. For the dynamical structure
factor this yields a Lorentzian shape

Si(Q,ω)= 1
πħ

Γ(Q)
ω2 +Γ(Q)2

, (D.2.6)

with Γ(Q) being the half width at half maximum.

On the other hand, the long-time behaviour of G(r, t) is determined by the diffusion
constant D (for cubic symmetry or isotropy, while in the general case it would be a
second-order diffusion tensor), which allows to identify

Γ(Q)= DQ2 (D.2.7)

in the limit of small Q (where again for the incoherent case D is the self-diffusion
constant), which is the so-called hydrodynamic limit. For liquids, this theory of
diffusion on a lattice can be adapted by radially averaging the diffusion kernel
and thus the linewidth, corresponding to uncorrelated jumps over a given distance
but random orientations.

Indeed, quasi-elastic neutron scattering can for example determine the diffusion
constants in levitated droplets of metallic melts, without being subject to compli-
cations such as convection. However, the main advantage of such measurements
lies in the sensitivity to the fundamental scale of the diffusional jumps, which
allows to directly distinguish between different diffusion models as opposed to
only indirect evidence given by macroscopic diffusion measurements.

There exist also intermediate states between statics and diffusive dynamics. This
applies for instance for the diffusion of atoms in a cage such as for a bound
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pair of a mobile and an immobile impurity in a host material, or for rotational
dynamics of a molecule bound to its place in a crystal. Here the self-correlation
function evolves from a single peak at t = 0 to a finite number of peaks at t =∞,
corresponding to the autocorrelation of the possible positions. For the dynamical
structure factor, this gives a sum of a δ distribution in ω, corresponding to a purely
elastic sharp peak, and a Lorentzian function, corresponding to quasi-elastic
scattering. Apart from the timescale of the diffusive motion given by the width
of the quasi-elastic signal, the geometry of such diffusive motion within a fixed
volume is captured by the elastic incoherent structure factor, the ratio of elastic
intensity to total intensity, which is determined from the measurements and fitted
by the expressions corresponding to plausible models.

D.3 Inelastic scattering

In contrast to the broadening of the elastic line for diffusive dynamics discussed
above, inelastic scattering refers to situations with well-separated energy trans-
fers. This is the domain of oscillatory dynamics. In the easiest case, the considered
degrees of freedom are subject to a quadratic potential. Indeed, this harmonic
approximation is the correct low-temperature limit and will in general be assumed
below. Classically, the resulting temporal evolution of the degrees of freedom will
correspond to an oscillatory motion with some amplitude and a well-defined an-
gular frequency ω. However, according to quantum mechanics the eigenstates
of the system are quantized, with separations in energy equal to ħω. During a
neutron scattering event, the sample can experience a transition between such
states, leading to the corresponding neutron energy transfers.

A simple example of the general concepts sketched above lies in the vibrational
dynamics of molecules. Here in principle equivalent information as by Raman
scattering can be obtained, but with different selection rules. More typical ex-
amples for inelastic neutron scattering involve however degrees of freedom in
crystals, specifically the nuclear positions and magnetic spins. The corresponding
excitations are called phonons and magnons, respectively, with the names indicat-
ing their nature as quasi-particles. In a more general setting, these excitations are
the massless Goldstone bosons due to the spontaneous breaking of the symmetries
of the vacuum. These excitations are many-body effects, the theory of which
becomes tractable due to the regular arrangements in crystals (allowing a concise
description in reciprocal space) and the harmonic assumption.

D.3.1 Vibrational dynamics in crystals

The restoring force due to the displacement of an atom is given by interactions
with its neighbouring atoms. Thus, the classical equations of motion are coupled
differential equations in the positions of all atoms in the crystal. However, these
interactions obey the discrete translation symmetry of the crystal, and with the
forces being linear in the displacements in the harmonic approximation, the
effect of the neighbouring atoms’ displacements mathematically is a convolution.
Writing the displacements as a Fourier sum, only the 3Λ equations for a given
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q remain coupled, where Λ is the number of atoms per unit cell. Solving the
corresponding sets of linear equations gives 3Λ normal modes for each q described
by the polarization vectors es(q) and associated angular frequencies ωs(q). For
a given q, the polarization vectors of the different modes, being eigenvectors of
the Hermitian dynamical matrix (essentially the Fourier-transformed coupling
constant matrix), are orthogonal and are generally chosen to be normalized. Thus,
the classical temporal evolution of the positions of the atoms of the crystal would
be given by

uλ,i(t)=
∑
q,s

as(q)
(
es(q)

)
λeiqrλ,i eiωs(q)t, (D.3.1)

where uλ,i is the displacement of atom i on sublattice λ from its equilibrium
position at rλ,i, as(q) are the complex amplitudes of the distinct normal modes
(which are the degrees of freedom and specify the states of the system for all
times) and the sum goes over the Brillouin zone and the different normal modes
at given q.

By construction, the time-dependent amplitudes in the distinct normal modes do
not interact, which means that they correspond to uncoupled degrees of freedom
subject to a harmonic potential. Thus, the standard problem of the quantum-
mechanical harmonic oscillator applies, giving rise to the concept of phonons, that
is, the image of the state of the system being described by how many phonons
(each corresponding to a transition to the next energy level) are in each normal
mode as sketched above. Starting from Eq. (C.3.25), writing the displacements in
terms of phonon creation and annihilation operators along with further elementary
manipulations, and performing a further Taylor expansion of the scattering phases
of the displaced atoms leads to a series of differential cross sections, the so-called
phonon expansion. Its terms correspond to scattering processes where a distinct
number of phonon transitions happen. That is, the zeroth-order term is just
the elastic cross section, which is essentially Eq. (C.3.25) with the Heisenberg
operators R j(t) being replaced by the static undisplaced atomic positions and
additionally being multiplied by the Debye-Waller factor.

The coherent one-phonon differential cross section per atom, for simplicity for the
case of a Bravais lattice with Λ= 1, results as(

d2σ

dΩdEf

)one ph.

= σcoh

4π
kf

ki

VBZ

2m
D(Q)

∑
s,G,q

(
Q ·es(q)

)2

ωs(q)

×
(〈

ns(q)+1
〉
δ
(
ω−ωs(q)

)
δ(Q−q−G)

+〈
ns(q)

〉
δ
(
ω+ωs(q)

)
δ(Q+q−G)

)
.

(D.3.2)

Here VBZ is the volume of the Brillouin zone, m is the atomic mass, and G are the
reciprocal lattice vectors. As the ωs(q) are chosen as positive, the first term in the
sum corresponds to an energy loss of the neutron (ω> 0) due to the creation of
a phonon (phonon emission), and the second term to an energy gain for phonon
absorption. The second δ factor in both terms corresponds to crystal momentum
conservation, restricting neutron wavevector Q and phonon wavevector q to be
equal up to a reciprocal lattice vector. This is only to underline the point, but as
es, ωs and ns have the reciprocal lattice periodicity, they could equivalently be
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evaluated at Q and the explicit crystal momentum conservation condition could
be dropped.

The expected value for the phonon number per mode according to Bose-Einstein
statistics is given by

〈
ns(q)

〉= 1
eħωs(q)/kBT −1

. (D.3.3)

As 〈
ns(q)

〉〈
ns(q)+1

〉 = e−ħωs(q)/kBT (D.3.4)

the detailed balance condition (C.4.16) is fulfilled, that is, specifically for low
energies the energy-loss scattering will be much stronger that the energy-gain
scattering.

The fact that in the one-phonon expression at a given Q only phonons with the
corresponding q are emitted or absorbed, of which there are in the general case
3Λ possibilities for the different normal modes, gives a corresponding number
of dispersion branches, that is, curves of ωs(q), which can for high-symmetry
directions be degenerate. In other words, where coherent elastic scattering on
crystals gives intensity just on points (the Bragg peaks), that is, zero-dimensional
manifolds in four-dimensional (Q,ω)-space, one-phonon scattering gives three-
dimensional hypersurfaces. Thus, without energy analysis there is intensity at all
points in three-dimensional Q-space, which is nothing else than thermal diffuse
scattering.

For Λ > 1, one distinguishes between the three acoustic branches, where the
displacements of the different sites are largely in phase (apart from the modulation
of phase with eiqrλ,i ), that is, where the polarization vector entries of the different
sites are largely parallel, and the 3Λ−3 optical branches, where the displacements
are out of phase. In the limit of small q, acoustic modes correspond to macroscopic
strain waves, while optical modes correspond to the oscillations of the entire
sublattices against each other. Long-wavelength acoustic modes experience only
small restoring forces (as the displacements with respect to their neighbours is
small), so their frequencies and energies are small as well (and specifically go
linearly to zero with q→ 0). Thus, thermal diffuse scattering increases towards
the Bragg peaks as the occupation numbers increase.

On the other hand, performing an experiment without Q-resolution, such as on a
polycrystal with an additional average over the scattering angle, or inherently in
the case of incoherent scattering, gives a distribution of energy transfers, corre-
sponding to the phonon density of states. Actually, for calculating thermodynamic
quantities, the density of states incorporates all necessary information. As the
phonon dispersions are smooth,5 in three dimensions the densities of states are

5When the interactions between the atoms are short-range, that is, fall sufficiently fast with
distance, the phonon frequencies are necessarily smooth. However, interactions mediated by conduction
electron can be non-local, with the most prominent consequence being the Kohn anomalies due to a
jump in the generalized susceptibility at the Fermi level. This gives in turn a jump in the phonon
dispersion, but such effects are typically small and, with finite experimental resolution, often not
obvious.



D.3. INELASTIC SCATTERING 101

continuous. However, stationary points of ωs(q), where the gradient with respect
to q vanishes, give the so-called van Hove singularities in the densities of states,
which locally have a square-root shape in three dimensions. For non-Bravais
systems, the correspondence between the incoherent energy-resolved differential
cross section and the density of states is more complicated, for instance due to
different scattering lengths and different Debye-Waller factors for the respective
sublattices.

In the two-phonon cross section (and analogously in the higher-order terms),
phonons with different wavevectors q1 and q2 can participate, where we again
have the condition

Q=q1 +q2 +G (D.3.5)

and analogously for the energy conservation. However, due to the higher number
of degrees of freedom now for general Q and ω the two conditions can be fulfilled,
so that higher-order phonon terms give a diffuse background in (Q,ω)-space.
Experimentally, this is typically undesirable, as it is much harder to model than
the sharp one-phonon dispersions and does not incorporate relevant information
beyond the one-phonon behaviour.

Of course, the probability for multi-phonon processes rises with the phonon occu-
pations numbers, that is with temperature. As the phonon expansion corresponds
to the Taylor expansion of the scattering phases, the relative importance of higher-
order processes increases with Qu, where u is the typical thermal displacement.
Another effect with an analogous behaviour is anharmonicity: in fact, also the
harmonic assumption is just an approximation, and for large displacements higher-
order terms in the interactions will appear. This now pertains to the dynamics
of the crystal itself, leading to phonon-phonon scattering processes (where in the
simplest case one phonon decays to two phonons or vice versa) and thus finite
phonon lifetimes. As a consequence, the Fourier transform of the time-dependent
amplitude in a given normal mode shows some width in ω, which directly trans-
lates to an intrinsic finite width of the measured dispersions. Quantitatively,
this can be described by perturbation theory of the harmonic behaviour due to
higher-order terms in the potential, and the resulting spectral functions have the
expressions as for a damped harmonic oscillator.

The freedom of the experimenter when measuring phonon dispersion lies in
the choice of the energy-gain or -loss side, in which Brillouin zone to measure,
and, for high-symmetry structures, on which of a number of equivalent positions
within the Brillouin zone, that is, those that correspond to q that are related
by point symmetry operations. As mentioned above, the energy-loss peaks have
higher intensity, but due to aspects of focussing as discussed in Sect. B.2.5 also
measuring on the energy-gain side can be advantageous, specifically at higher
temperatures. As regards the other options, in the expression for the differential
cross section (D.3.2) both the Debye-Waller factor and the inner product

(
Q·es(q)

)2

depend explicitly on Q. As the Debye-Waller factor (D.1.7) decays faster than
exponentially with Q while the inner product increases with a power law, there
is some optimal value of |Q| in terms of scattered intensity. However, this is
not necessarily the best choice, as the multi-phonon background increases even
stronger with |Q|, and also the resolution of the spectrometer will decrease.
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A very important consequence of the choice of Q lies in the weighting of the
different modes according to the inner product. For instance, in a simple cubic
system the reciprocal-space positions Q1 = (1+ q,0,0) and Q2 = (1, q,0) correspond
to values of q that are related by symmetry. However, at Q1 strictly only lon-
gitudinal modes contribute, while at Q2 transversal modes dominate, the more
so as q becomes small. Note that in the first Brillouin zone in principle only
longitudinal modes are accessible. These selection rules allow to distinguish the
peaks belonging to different branches, which is specifically relevant near branch
crossings. For the general case of non-Bravais structures, in an analogous way
choosing the Brillouin zone one measures in determines whether the acoustic or
the optical (and which of those) dispersions dominate.

D.3.2 Collective magnetic dynamics

In principle, the inelastic scattering from dynamic spin configurations is quali-
tatively equivalent to the above-treated nuclear case. The case of paramagnetic
scattering would thus correspond to quasi-elastic scattering from a liquid as dis-
cussed in Sect. D.1.6, while the magnetic excitations of ordered arrangements are
collective modes perfectly analogous to phonons, and are called magnons.

Specifically, the simplest approximation to the case of spin-only magnetization
with local moments is given by the Heisenberg model, where the spins are assumed
to have constant length but arbitrary orientation, and the Hamiltonian is given
by

H =−∑
i, j

Ji, jSi ·S j, (D.3.6)

where Si is the atomic spin of the atom at site i and the exchange parameter
Ji, j depends on the relative distance between the sites i and j (and of course the
respective sublattices in case of a non-Bravais structure). Further, this interaction
between the moments can be augmented by a Zeeman term due to an external field
(which typically is a few orders of magnitude weaker than the ion-ion interaction),
and a single-ion anisotropy term due to-spin orbit coupling that favours distinct
orientations of the atomic spins with respect to the crystal lattice (and is typically
still weaker). Even though the Heisenberg model is natural only for the case of
localized moments, it can also describe more itinerant systems surprisingly well.

For a ferromagnet in the linear spin-wave theory (which in some sense neglects
the fact that, different from the phonon case, the deviation of a spin approaches
again the undisplaced value when one keeps adding magnons in a given mode),
the cross section due to spin-wave inelastic scattering reads(

d2σ

dΩdEf

)one mag.

= (γr0)2
kf

ki
VBZ

S
2

F2(Q)D(Q)
(
1+ Q2

z

Q2

)
× ∑

G,q

(〈
n(q)+1

〉
δ
(
ω−ω(q)

)
δ(Q−q−G)

+〈
n(q)

〉
δ
(
ω+ω(q)

)
δ(Q+q−G)

)
(D.3.7)

for magnetization in the z-direction. In fact, in the linear approximation there is
only the elastic zero-magnon term and the one-magnon term.



D.3. INELASTIC SCATTERING 103

In the Heisenberg model, spins are assumed to have constant length. The excita-
tions of the ferromagnetic ground-state are thus transversal reorientations, with
the physical picture of a spin wave corresponding to the precession of the spins
around a cone, centered about the direction of magnetization, and proceeding
as one goes along q. The fixed length of the spins is in reality typically obeyed
to a good approximation, so that there are no measurable longitudinal excita-
tions (there are exceptions, however, when the system is undecided about the
preferred value of the spin). As a consequence, a ferromagnet has just one magnon
branch, because there is just one complex-valued degree of freedom per atom,
the amplitude and phase of the precession around the magnetization as sketched
above.

The magneto-crystalline anisotropy term due to spin-orbit coupling gives non-
vanishing restoring forces also in the limit of q→ 0, which results in the anisotropy
gap, that is, ω(q) does not go to zero for small q, in contrast to the phonon case.
Further, even in the absence of this effect the dispersion is quadratic around q= 0,
because the interaction energy increases only quadratically with small differences
in the orientations of neighbouring spins according to Eq. (D.3.6), again different
from the linear behaviour of phonons.

In an antiferromagnet, additionally optical magnon branches appear. However,
the corresponding energies can be quite high, which also applies to the acoustic
branch for q towards the Brillouin zone boundary. With thermal and even more
so with cold triple-axis spectrometers, too high energy transfers cannot be mea-
sured, as magnon dispersions are generally measured on the energy-loss side (low
temperatures are needed for sharp dispersions, giving very small probabilities for
energy-gain transitions due to the Bose-Einstein occupation numbers). Thus, the
measurement of magnon dispersions over the whole Brillouin zone is the domain
of hot triple-axis spectrometers, or even time-of-flight spectrometers at pulsed
sources using undermoderated neutrons.

Different from phonons, magnon scattering, as always for magnetic scattering,
sees magnetization components perpendicular to Q. This explains the fact that
the magnon intensity is highest if the magnetization is parallel to Q according
to the factor (1+Q2

z /Q2) in Eq. (D.3.7), as in this case the modulations are purely
perpendicular according to the picture of the spin wave sketched above. This can
also be used to distinguish magnon from phonon branches by studying the effect
of rotating the sample magnetization with respect to Q on the intensities.
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